Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1978, 43, 3024-3034
https://doi.org/10.1135/cccc19783024

Correlation of some infrared spectra regions with the structure of a substituted pyridine ring system

Jan Vymětal and Zdeněk Hejda

Crossref Cited-by Linking

  • Urosevic Jovica, Mitic Miroslav, Arsic Biljana, Stojanovic Gordana: Optimization of the reaction conditions for the synthesis of 2,3,5-trimethylpyridine from 3-amino-2-methylpropenal and methylethylketone. J Serb Chem Soc 2022, 87, 1117. <https://doi.org/10.2298/JSC210918042U>
  • Ren Li-Te, Li Xiao-Pei, Liu Jian-Lan, Ren Xiao-Ming: Synthesis and investigation of proton conductivity for intercalated kaolinite with 4-amidinopyridinium chloride. Journal of Solid State Chemistry 2015, 232, 31. <https://doi.org/10.1016/j.jssc.2015.09.001>
  • Zou Guang-Zhen, Gao Hong, Liu Jian-Lan, Zhao Shun-Ping, Tian Zheng-Fang, Ren Xiao-Ming: Novel dielectric relaxation behaviors driven by host–guest interactions in intercalated compounds of kaolinite with aminopyridine isomers. RSC Adv. 2013, 3, 23596. <https://doi.org/10.1039/c3ra40579f>
  • Wandas M., Puszko A.: IR spectra of 2-alkylamino-and alkylnitramino-3-or 5-nitro-4-methylpyridine derivatives. Chem Heterocycl Compd 2000, 36, 796. <https://doi.org/10.1007/BF02256912>
  • Flejszar-Olszewska J.Z., Muszyński A.S., Hawranek J.P.: Thin film FTIR transmission spectra of liquid 2,4,6-trimethylpyridine. Journal of Molecular Structure 1997, 404, 247. <https://doi.org/10.1016/S0022-2860(96)09387-8>
  • Salaita G.N., Hubbard A.T.: Surface characterization of molecules at pt(111) using leed, auger, hreels and electrochemistry in ultrahigh vacuum. Catalysis Today 1992, 12, 465. <https://doi.org/10.1016/0920-5861(92)80063-S>