Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1977, 42, 731-744
https://doi.org/10.1135/cccc19770731

Intermolecular calcium ion binding on polyuronates-polygalacturonate and polyguluronate

R. Kohn and O. Luknár

Crossref Cited-by Linking

  • Sardar Puspendu, Šustr Vladimír, Chroňáková Alica, Lorenc František: Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Front. Ecol. Evol. 2022, 10. <https://doi.org/10.3389/fevo.2022.931986>
  • Buergy Alexandra, Rolland-Sabaté Agnès, Leca Alexandre, Falourd Xavier, Foucat Loïc, Renard Catherine M.G.C.: Pectin degradation accounts for apple tissue fragmentation during thermomechanical-mediated puree production. Food Hydrocolloids 2021, 120, 106885. <https://doi.org/10.1016/j.foodhyd.2021.106885>
  • Buergy Alexandra, Rolland-Sabaté Agnès, Leca Alexandre, Renard Catherine M.G.C.: Apple puree's texture is independent from fruit firmness. LWT 2021, 145, 111324. <https://doi.org/10.1016/j.lwt.2021.111324>
  • Donati Ivan, Benegas Julio, Paoletti Sergio: On the Molecular Mechanism of the Calcium-Induced Gelation of Pectate. Different Steps in the Binding of Calcium Ions by Pectate. Biomacromolecules 2021, 22, 5000. <https://doi.org/10.1021/acs.biomac.1c00958>
  • Antonov Yurij A., Zhuravleva Irina L., Celus Miete, Kyomugasho Clare, Lombardo Salvatore, Thielemans Wim, Hendrickx Marc, Moldenaers Paula, Cardinaels Ruth: Generality and specificity of the binding behaviour of lysozyme with pectin varying in local charge density and overall charge. Food Hydrocolloids 2020, 99, 105345. <https://doi.org/10.1016/j.foodhyd.2019.105345>
  • Buergy Alexandra, Rolland-Sabaté Agnès, Leca Alexandre, Renard Catherine M.G.C.: Pectin modifications in raw fruits alter texture of plant cell dispersions. Food Hydrocolloids 2020, 107, 105962. <https://doi.org/10.1016/j.foodhyd.2020.105962>
  • Celus Miete, Kyomugasho Clare, Van Loey Ann M., Grauwet Tara, Hendrickx Marc E.: Influence of Pectin Structural Properties on Interactions with Divalent Cations and Its Associated Functionalities. Comp Rev Food Sci Food Safe 2018, 17, 1576. <https://doi.org/10.1111/1541-4337.12394>
  • Lakshtanov L. Z., Belova D. A., Okhrimenko D. V., Stipp S. L. S.: Role of Alginate in Calcite Recrystallization. Crystal Growth & Design 2015, 15, 419. <https://doi.org/10.1021/cg501492c>
  • Chen Jun, Liu Wei, Liu Cheng-Mei, Li Ti, Liang Rui-Hong, Luo Shun-Jing: Pectin Modifications: A Review. Critical Reviews in Food Science and Nutrition 2015, 55, 1684. <https://doi.org/10.1080/10408398.2012.718722>
  • Patova O. A., Golovchenko V. V., Ovodov Yu. S.: Pectic polysaccharides: structure and properties. Russ Chem Bull 2014, 63, 1901. <https://doi.org/10.1007/s11172-014-0681-9>
  • Kirsch Roy, Gramzow Lydia, Theißen Günter, Siegfried Blair D., ffrench-Constant Richard H., Heckel David G., Pauchet Yannick: Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. Insect Biochemistry and Molecular Biology 2014, 52, 33. <https://doi.org/10.1016/j.ibmb.2014.06.008>
  • Ravn Helle C., Meyer Anne S.: Chelating agents improve enzymatic solubilization of pectinaceous co-processing streams. Process Biochemistry 2014, 49, 250. <https://doi.org/10.1016/j.procbio.2013.11.010>
  • Brito Ivina R., Lima Isadora M. T., Xu Min, Shea Lonnie D., Woodruff Teresa K., Figueiredo Jos� R.: Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod. Fertil. Dev. 2014, 26, 915. <https://doi.org/10.1071/RD12401>
  • Scully Erin D, Geib Scott M, Carlson John E, Tien Ming, McKenna Duane, Hoover Kelli: Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics 2014, 15. <https://doi.org/10.1186/1471-2164-15-1096>
  • Yapo Beda M., Koffi Kouassi L.: Utilisation of model pectins reveals the effect of demethylated block size frequency on calcium gel formation. Carbohydrate Polymers 2013, 92, 1. <https://doi.org/10.1016/j.carbpol.2012.09.010>
  • Scully Erin D., Geib Scott M., Hoover Kelli, Tien Ming, Tringe Susannah G., Barry Kerrie W., Glavina del Rio Tijana, Chovatia Mansi, Herr Joshua R., Carlson John E., Oliveira Pedro Lagerblad: Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle. PLoS ONE 2013, 8, e73827. <https://doi.org/10.1371/journal.pone.0073827>
  • Milkova Viktoria, Kamburova Kamelia, Cameron Randall, Radeva Tsetska: Complexation of Ferric Oxide Particles with Pectins of Ordered and Random Distribution of Charged Units. Biomacromolecules 2012, 13, 138. <https://doi.org/10.1021/bm201374p>
  • Gou Jin-Ying, Miller Lisa M., Hou Guichuan, Yu Xiao-Hong, Chen Xiao-Ya, Liu Chang-Jun: Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction  . The Plant Cell 2012, 24, 50. <https://doi.org/10.1105/tpc.111.092411>
  • Fraeye Ilse, Duvetter Thomas, Doungla Eugénie, Van Loey Ann, Hendrickx Marc: Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology 2010, 21, 219. <https://doi.org/10.1016/j.tifs.2010.02.001>
  • Flodrová Dana, Garajová Soňa, Malovíková Anna, Mislovičová Danica, Omelková Jiřina, Stratilová Eva: Oligogalacturonate hydrolase with unique substrate preference from the pulp of parsley roots. Biologia 2009, 64, 228. <https://doi.org/10.2478/s11756-009-0038-2>
  • Luzio Gary A., Cameron Randall G.: Demethylation of a model homogalacturonan with the salt-independent pectin methylesterase from citrus: Part II. Structure–function analysis. Carbohydrate Polymers 2008, 71, 300. <https://doi.org/10.1016/j.carbpol.2007.05.038>
  • Donati Ivan, Benegas Julio C., Paoletti Sergio: Polyelectrolyte Study of the Calcium-Induced Chain Association of Pectate. Biomacromolecules 2006, 7, 3439. <https://doi.org/10.1021/bm060164t>
  • Young Niall W.G, Kappel Grethe, Bladt Tove: A polyuronan blend giving novel synergistic effects and bake-stable functionality to high soluble solids fruit fillings. Food Hydrocolloids 2003, 17, 407. <https://doi.org/10.1016/S0268-005X(03)00032-8>
  • Franco Carlos R., Chagas Aécio P., Jorge Renato A.: Ion-exchange equilibria with aluminum pectinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 204, 183. <https://doi.org/10.1016/S0927-7757(01)01134-7>
  • Goldberg Renée, Pierron Monique, Bordenave Marianne, Breton Christelle, Morvan Claudine, du Penhoat Catherine Hervé: Control of Mung Bean Pectinmethylesterase Isoform Activities. Journal of Biological Chemistry 2001, 276, 8841. <https://doi.org/10.1074/jbc.M001791200>
  • Wiedmer Susanne K., Cassely Aaron, Hong Mingfang, Novotny Milos V., Riekkola Marja-Liisa: Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions. Electrophoresis 2000, 21, 3212. <https://doi.org/10.1002/1522-2683(20000901)21:15<3212::AID-ELPS3212>3.0.CO;2-N>
  • Renard C.M.G.C., Jarvis M.C.: Acetylation and methylation of homogalacturonans 2: effect on ion-binding properties and conformations. Carbohydrate Polymers 1999, 39, 209. <https://doi.org/10.1016/S0144-8617(99)00015-6>
  • Wellner Nikolaus, Kačuráková Marta, Malovı́ková Anna, Wilson Reginald H., Belton Peter S.: FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydrate Research 1998, 308, 123. <https://doi.org/10.1016/S0008-6215(98)00065-2>
  • Thakur Beli R., Singh Rakesh K., Handa Avtar K., Rao M. A.: Chemistry and uses of pectin — A review. Critical Reviews in Food Science and Nutrition 1997, 37, 47. <https://doi.org/10.1080/10408399709527767>
  • Goldberg Renée, Prat Roger, Morvan Claudine: Structural features of water-soluble pectins from mung bean hypocotyls. Carbohydrate Polymers 1994, 23, 203. <https://doi.org/10.1016/0144-8617(94)90103-1>
  • Davarski K. A., Manolov S. N., Petrova I. N., Mavrov V. D.: COMPLEX EQUILIBRIA IN THE SYSTEM M2+-POLYGALACTURONIC ACID (PECTIN) - H2O (M = Co, Ni, Cu, Zn, Cd AND Pb). Journal of Coordination Chemistry 1994, 33, 75. <https://doi.org/10.1080/00958979408024264>
  • VAN CUTSEM P., MESSIAEN J.: Biological effects of pectic fragments in plant cells. Acta Botanica Neerlandica 1994, 43, 231. <https://doi.org/10.1111/j.1438-8677.1994.tb00749.x>
  • Braudo E.E., Soshinsky A.A., Yuryev V.P., Tolstoguzov V.B.: The interaction of polyuronides with calcium ions. 1: binding isotherms of calcium ions with pectic substances. Carbohydrate Polymers 1992, 18, 165. <https://doi.org/10.1016/0144-8617(92)90060-4>
  • Hourdet Dominique, Muller Guy: Solution properties of pectin polysaccharides — III: Molecular size of heterogeneous pectin chains. Calibration and application of SEC to pectin analysis. Carbohydrate Polymers 1991, 16, 409. <https://doi.org/10.1016/0144-8617(91)90059-L>
  • Braudo E.E.: Polyuronide interactions with polycoordinative metal ions. Food Hydrocolloids 1991, 5, 75. <https://doi.org/10.1016/S0268-005X(09)80290-7>
  • Lips A., Clark A.H., Cutler N., Durand D.: Measurement of cooperativity of binding of calcium to neutral sodium pectate. Food Hydrocolloids 1991, 5, 87. <https://doi.org/10.1016/S0268-005X(09)80291-9>
  • Thibault Jean-François, Saulnier Lu, Axelos Monique A.V., Renard Catherine M.G.C.: Difficultés expérimentales de l'étude des macromolécules pectiques. Bulletin de la Société Botanique de France. Actualités Botaniques 1991, 138, 319. <https://doi.org/10.1080/01811789.1991.10827077>
  • Gessa C., Deiana S.: Fibrillar structure of Ca polygalacturonate as a model for a soil-root interface. Plant Soil 1990, 129, 211. <https://doi.org/10.1007/BF00032415>
  • Kohn Rudolf: Binding of divalent cations to oligomeric fragments of pectin. Carbohydrate Research 1987, 160, 343. <https://doi.org/10.1016/0008-6215(87)80322-1>
  • Thibault J. F., Rinaudo M.: Chain association of pectic molecules during calcium‐induced gelation. Biopolymers 1986, 25, 455. <https://doi.org/10.1002/bip.360250306>
  • Thibault J. F., Rinaudo M.: Interactions of mono‐ and divalent counterions with alkali‐ and enzyme‐deesterified pectins in salt‐free solutions. Biopolymers 1985, 24, 2131. <https://doi.org/10.1002/bip.360241109>
  • Kohn R., Dongowski G., Bock W.: Die Verteilung der freien und veresterten Carboxylgruppen im Pektinmolekül nach Einwirkung von Pektinesterase aus Aspergillus niger und Orangen. Nahrung 1985, 29, 75. <https://doi.org/10.1002/food.19850290117>
  • Thibault Jean‐Francois, Rinaudo Marguerite: Gelation of pectinic acids in the presence of calcium counterions. Brit. Poly. J. 1985, 17, 181. <https://doi.org/10.1002/pi.4980170217>
  • Bratko D., Dolar D.: Ellipsoidal model of polyelectrolyte solutions. The Journal of Chemical Physics 1984, 80, 5782. <https://doi.org/10.1063/1.446601>
  • JARVIS MICHAEL C.: Structure and properties of pectin gels in plant cell walls. Plant Cell & Environment 1984, 7, 153. <https://doi.org/10.1111/1365-3040.ep11614586>
  • JARVIS MICHAEL C.: Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 1984, 7, 153. <https://doi.org/10.1111/j.1365-3040.1984.tb01662.x>
  • Cesàro A., Ciana A., Delben F., Manzini G., Paoletti S.: Physicochemical properties of pectic acid. I. Thermodynamic evidence of a pH‐induced conformational transition in aqueous solution. Biopolymers 1982, 21, 431. <https://doi.org/10.1002/bip.360210214>
  • Powell D.A., Morris E.R., Gidley M.J., Rees D.A.: Conformations and interactions of pectins. Journal of Molecular Biology 1982, 155, 517. <https://doi.org/10.1016/0022-2836(82)90485-5>
  • Taylor Andrew J.: Intramolecular distribution of carboxyl groups in low methoxyl pectins — A review. Carbohydrate Polymers 1982, 2, 9. <https://doi.org/10.1016/0144-8617(82)90041-8>
  • Tuerena C.E., Taylor A.J., Mitchell J.R.: Evaluation of a method for determining the free carboxyl group distribution in pectins. Carbohydrate Polymers 1982, 2, 193. <https://doi.org/10.1016/0144-8617(82)90051-0>
  • Ravanat G., Rinaudo M.: Investigation on oligo‐ and polygalacturonic acids by potentiometry and circular dichroism. Biopolymers 1980, 19, 2209. <https://doi.org/10.1002/bip.1980.360191206>
  • Rinaudo M., Ravanat G., Vincedon M.: NMR investigation on oligo‐ and poly(galacturonic acid)s; gel formation in the presence of Ca2+ counterions. Makromol. Chem. 1980, 181, 1059. <https://doi.org/10.1002/macp.1980.021810510>
  • Morris Edwin R., Rees David A., Thom David, Boyd Jonathan: Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydrate Research 1978, 66, 145. <https://doi.org/10.1016/S0008-6215(00)83247-4>
  • Bock W., Anger H., Kohn R., Maloviková A., Dongowski G., Friebe R.: Charakterisierung mechanolytisch abgebauter Pektinpräparate. Angew. Makromol. Chem. 1977, 64, 133. <https://doi.org/10.1002/apmc.1977.050640112>