Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1977, 42, 3667-3675
https://doi.org/10.1135/cccc19773667

Enzyme electrode with immobilized polyphenol oxidase for determination of phenolic substrates

L. Macholán and L. Scháněl

Crossref Cited-by Linking

  • Kumar Harish, Kumari Neetu, Sharma Rahul: Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges. Environmental Impact Assessment Review 2020, 85, 106438. <https://doi.org/10.1016/j.eiar.2020.106438>
  • Hashim Hazwani Suhaila, Fen Yap Wing, Omar Nur Alia Sheh, Daniyal Wan Mohd Ebtisyam Mustaqim Mohd, Saleviter Silvan, Abdullah Jaafar: Structural, optical and potential sensing properties of tyrosinase immobilized graphene oxide thin film on gold surface. Optik 2020, 212, 164786. <https://doi.org/10.1016/j.ijleo.2020.164786>
  • Draghi Patrícia Ferrante, Fernandes Julio Cesar Bastos: Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis. Talanta 2017, 164, 413. <https://doi.org/10.1016/j.talanta.2016.12.002>
  • Tembe S., D’Souza S. F.: Immobilisation strategies for construction of tyrosinase-based biosensors. Materials Technology 2015, 30, B190. <https://doi.org/10.1179/1753555714Y.0000000247>
  • Stoytcheva M., Zlatev R., Gochev V., Velkova Z., Montero G., Beleño M.T.: Amperometric biosensors precision improvement. Application to phenolic pollutants determination. Electrochimica Acta 2014, 147, 25. <https://doi.org/10.1016/j.electacta.2014.09.106>
  • Pérez-López Briza, Merkoçi Arben: Magnetic Nanoparticles Modified with Carbon Nanotubes for Electrocatalytic Magnetoswitchable Biosensing Applications. Adv. Funct. Mater. 2011, 21, 255. <https://doi.org/10.1002/adfm.201001306>
  • Tembe Sanket, Kubal B.S., Karve Meena, D'Souza S.F.: Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus: Application in construction of electrochemical biosensor for dopamine. Analytica Chimica Acta 2008, 612, 212. <https://doi.org/10.1016/j.aca.2008.02.031>
  • Anh Tuan Mai, Dzyadevych Sergei V., Van Minh Chau, Renault Nicole Jaffrezic, Duc Chien Nguyen, Chovelon Jean-Marc: Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 2004, 63, 365. <https://doi.org/10.1016/j.talanta.2003.11.008>
  • Kaoutit Mohamed El, Bouchta Dounia, Zejli Hanane, Izaoumen Nisrine, Temsamani Khalid R.: A Simple Conducting Polymer‐Based Biosensor for the Detection of Atrazine. Analytical Letters 2004, 37, 1671. <https://doi.org/10.1081/AL-120037595>
  • Liu Zhenjiu, Deng Jiaqi, Li Ding: A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilize tyrosinase and the mediator. Analytica Chimica Acta 2000, 407, 87. <https://doi.org/10.1016/S0003-2670(99)00807-7>
  • Kranz Christine, Wohlschläger Heidi, Schmidt Hanns‐Ludwig, Schuhmann Wolfgang: Controlled Electrochemical Preparation of Amperometric Biosensors Based on Conducting Polymer Multilayers. Electroanalysis 1998, 10, 546. <https://doi.org/10.1002/(SICI)1521-4109(199807)10:8<546::AID-ELAN546>3.0.CO;2-#>
  • Wollenberger Ulla, Neumann Barbara: Quinoprotein glucose dehydrogenase modified carbon paste electrode for the detection of phenolic compounds. Electroanalysis 1997, 9, 366. <https://doi.org/10.1002/elan.1140090503>
  • Hedenmo Maria, Narváez Arántzazu, Domínguez Elena, Katakis Ioanis: Improved mediated tyrosinase amperometric enzyme electrodes. Journal of Electroanalytical Chemistry 1997, 425, 1. <https://doi.org/10.1016/S0022-0728(96)04966-2>
  • Vieira Iolanda da Cruz, Fatibello-Filho Orlando: Amperometric Biosensor for the Determination of Phenols Using a Crude Extract of Sweet Potato(Ipomoea Batatas (L.) Lam.). Analytical Letters 1997, 30, 895. <https://doi.org/10.1080/00032719708002304>
  • Cosnier Serge, Popescu Ionel Cătălin: Poly(amphiphilic pyrrole)-tyrosinase-peroxidase electrode for amplified flow injection-amperometric detection of phenol. Analytica Chimica Acta 1996, 319, 145. <https://doi.org/10.1016/0003-2670(95)00479-3>
  • Manjón A, Iborra J.L., Lozano P., Cánovas M.: A practical experiment on enzyme immobilization and characterization of the immobilized derivatives. Biochemical Education 1995, 23, 213. <https://doi.org/10.1016/0307-4412(95)00066-C>
  • Eremenko Arkadi, Makower Alexander, Jin Wen, Rüger Petra, Scheller Frieder: Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols. Biosensors and Bioelectronics 1995, 10, 717. <https://doi.org/10.1016/0956-5663(95)96962-X>
  • Kotte Heiner., Gruendig Bernd., Vorlop Klaus-Dieter., Strehlitz Beate., Stottmeister Ullrich.: Methylphenazonium-Modified Enzyme Sensor Based on Polymer Thick Films for Subnanomolar Detection of Phenols. Anal. Chem. 1995, 67, 65. <https://doi.org/10.1021/ac00097a011>
  • Eremenko A. V., Barmin A. V., Kurochkin I. N.: Opioid Peptides Determination by Tyrosinase-Modified Oxygen Electrode. Analytical Letters 1995, 28, 2297. <https://doi.org/10.1080/00032719508000373>
  • Ghindilis A.L., Gavrilova V.P., Yaropolov A.I.: Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. Biosensors and Bioelectronics 1992, 7, 127. <https://doi.org/10.1016/0956-5663(92)90017-H>
  • Tillyer C.R., Gobin P.T.: The development of a catechol enzyme electrode and its possible use for the diagnosis and monitoring of neural crest tumours. Biosensors and Bioelectronics 1991, 6, 569. <https://doi.org/10.1016/0956-5663(91)80021-O>
  • Ciucu A., Magearu V., Fleschin S., Lucaciu I., David F.: Biocatalytical Membrane Electrode for Phenol. Analytical Letters 1991, 24, 567. <https://doi.org/10.1080/00032719108052927>
  • Berenguer J. J., Manjon A., Iborra J. L.: A pH-tyrosinase biosensor for aminoacids, catecholamines and adrenergic drugs determination. Biotechnol Tech 1989, 3, 211. <https://doi.org/10.1007/BF01875622>
  • Gaisford W C, Rawson D M: Biosensors for Environmental Monitoring. Measurement and Control 1989, 22, 183. <https://doi.org/10.1177/002029408902200604>
  • Macholán L.: Recent progress in developing enzyme and tissue‐based membrane electrodes. Acta Biotechnologica 1987, 7, 547. <https://doi.org/10.1002/abio.370070615>
  • Pacáková Věra, Śtulík Karle, Brabcová Dagmar: Use of the clark oxygen sensor with immobilized enzymes for determinations in flow systems. Analytica Chimica Acta 1984, 159, 71. <https://doi.org/10.1016/S0003-2670(00)84282-8>
  • Neujahr Halina Y.: Biosensors for Environmental Control. Biotechnology and Genetic Engineering Reviews 1984, 1, 167. <https://doi.org/10.1080/02648725.1984.10647785>
  • Schubert F., Wollenberger U., Scheller F.: Plant tissue-based amperometric tyrosine electrode. Biotechnol Lett 1983, 5, 239. <https://doi.org/10.1007/BF00161122>
  • Iborra JL, Vilanova E, Lozano JA, Vella F: Fellowships for attendance at the 12th International COngress of Biochemistry Perth, Western Australia, 15���21 August 1982. Biochemical Education 1981, 9, 50. <https://doi.org/10.1016/0307-4412(81)90164-3>
  • Fricke Gordon H.: Ion-selective electrodes. Anal. Chem. 1980, 52, 259. <https://doi.org/10.1021/ac50055a026>