Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1976, 41, 3347-3349
https://doi.org/10.1135/cccc19763347

A note on excess Gibbs energy equations based on local composition concept

V. Flemr

Crossref Cited-by Linking

  • Chialvo Ariel A.: Preferential solvation in pharmaceutical processing: Rigorous results, critical observations, and the unraveling of some significant modeling pitfalls. Fluid Phase Equilibria 2025, 587, 114212. <https://doi.org/10.1016/j.fluid.2024.114212>
  • Shih Yen-Jen, Lin Shiang-Tai: Can local composition models combined with global renormalization group theory describe the phase transitions in ferromagnetic materials?. Fluid Phase Equilibria 2024, 576, 113959. <https://doi.org/10.1016/j.fluid.2023.113959>
  • Chialvo Ariel A., Crisalle Oscar D.: Gas solubility and preferential solvation phenomena in mixed-solvents. Fluid Phase Equilibria 2024, 581, 114081. <https://doi.org/10.1016/j.fluid.2024.114081>
  • Chialvo Ariel A.: On the Elusive Links between Solution Microstructure, Dynamics, and Solvation Thermodynamics: Demystifying the Path through a Bridge over Troubled Conjectures and Misinterpretations. J. Phys. Chem. B 2023, 127, 10792. <https://doi.org/10.1021/acs.jpcb.3c04707>
  • Wang Chunlong, Chen Xiumin, Tao Dongping: Estimation of Component Activities and Molar Excess Gibbs Energy of 19 Binary Liquid Alloys from Partial Pair Distribution Functions in Literature. Metals 2023, 13, 996. <https://doi.org/10.3390/met13050996>
  • Iwai Yoshio, Seki Ryosuke, Tanaka Yoshihiro: Correlation of phase equilibria by new activity coefficient model. Fluid Phase Equilibria 2019, 488, 62. <https://doi.org/10.1016/j.fluid.2019.01.023>
  • Liu Te-Chien, Lin Shiang-Tai: A new approach for developing exact local composition models for lattice fluids. Journal of the Taiwan Institute of Chemical Engineers 2019, 96, 63. <https://doi.org/10.1016/j.jtice.2018.11.023>
  • Janardanan Sunder, Perez Lisa M., Mannan M. Sam: Study of phase behavior of 2,6-lutidine, 2,6-lutidine-N-oxide and water mixture using UNIQUAC model with interaction parameters determined by molecular simulations. Thermochimica Acta 2019, 671, 110. <https://doi.org/10.1016/j.tca.2018.10.001>
  • Liu Te-Chien, Lin Shiang-Tai: Exact Local Composition Model for Two-Dimensional Lattice Fluids. Ind. Eng. Chem. Res. 2019, 58, 20779. <https://doi.org/10.1021/acs.iecr.9b03218>
  • Kollau Laura J.B.M., Vis Mark, van den Bruinhorst Adriaan, de With Gijsbertus, Tuinier Remco: Activity modelling of the solid–liquid equilibrium of deep eutectic solvents. Pure and Applied Chemistry 2019, 91, 1341. <https://doi.org/10.1515/pac-2018-1014>
  • Haghtalab Ali, Seyf Jaber Yousefi: A new insight to validation of local composition models in binary mixtures using molecular dynamic simulation. AIChE Journal 2016, 62, 275. <https://doi.org/10.1002/aic.15038>
  • Chen Wei-Lin, Hsieh Chieh-Ming, Yang Li, Hsu Chan-Chia, Lin Shiang-Tai: A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor–Liquid and Liquid–Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations. Ind. Eng. Chem. Res. 2016, 55, 9312. <https://doi.org/10.1021/acs.iecr.6b02345>
  • Lungu Radu P., Sartorio Roberto: Spinodal Curve for the System Water + 1-Pentanol + 1-Propanol at 25 °C. J Solution Chem 2014, 43, 109. <https://doi.org/10.1007/s10953-013-0051-5>
  • Estela-Uribe Jorge F.: An improved Helmholtz energy model for non-polar fluids and their mixtures. Part 2: Application to mixtures of non-polar fluids. Fluid Phase Equilibria 2013, 354, 326. <https://doi.org/10.1016/j.fluid.2013.05.004>
  • Simonin Jean-Pierre, Marry Virginie: Local Composition for a Binary Mixture of Particles on a Three-Dimensional Ising Lattice. Ind. Eng. Chem. Res. 2012, 51, 15497. <https://doi.org/10.1021/ie301656n>
  • Lungu Radu P., Sartorio Roberto, Buzatu Florin D.: New Method for Theoretical Spinodals Corresponding to Ternary Solutions with an Amphiphile Component. J Solution Chem 2011, 40, 1687. <https://doi.org/10.1007/s10953-011-9749-4>
  • Castellanos-Suárez Aly J., García-Sucre Máximo: Symmetrization of excess Gibbs free energy: A simple model for binary liquid mixtures. The Journal of Chemical Thermodynamics 2011, 43, 442. <https://doi.org/10.1016/j.jct.2010.10.017>
  • Estela-Uribe J.F.: An improved Helmholtz energy model for air and the related systems. Fluid Phase Equilibria 2010, 287, 95. <https://doi.org/10.1016/j.fluid.2009.09.017>
  • Lin Shiang-Tai, Hsieh Min-Kang, Hsieh Chieh-Ming, Hsu Chan-Chia: Towards the development of theoretically correct liquid activity coefficient models. The Journal of Chemical Thermodynamics 2009, 41, 1145. <https://doi.org/10.1016/j.jct.2009.05.002>
  • Focke Walter W.: Weighted-Power-Mean Mixture Model for the Gibbs Energy of Fluid Mixtures. Ind. Eng. Chem. Res. 2009, 48, 5537. <https://doi.org/10.1021/ie900083h>
  • Arturo Steven G., Knox Dana E.: Application of force field in Gibbs ensemble lattice statistics to model vapor/liquid equilibria. Fluid Phase Equilibria 2007, 252, 175. <https://doi.org/10.1016/j.fluid.2006.12.009>
  • Hu Jiawen, Duan Zhenhao, Shi Xunli, Zhu Ji: A general local composition and coordination number model for square-well fluids with variable well width and diameter ratio. Molecular Physics 2007, 105, 1019. <https://doi.org/10.1080/00268970701262900>
  • Estela-Uribe J.F.: A Helmholtz energy model for air and binary mixtures of nitrogen, oxygen and argon. Fluid Phase Equilibria 2006, 243, 171. <https://doi.org/10.1016/j.fluid.2006.03.004>
  • Lin Shiang-Tai: Thermodynamic equations of state from molecular solvation. Fluid Phase Equilibria 2006, 245, 185. <https://doi.org/10.1016/j.fluid.2006.04.013>
  • Pai Sung Jin, Bae Young Chan, Kong Sung Ho, Ryu Si Ok: Mathematical modeling of the phase behaviors of solid‐polymer‐electrolyte/salt systems in lithium secondary batteries: The nonrandomness effect. J of Applied Polymer Sci 2004, 94, 231. <https://doi.org/10.1002/app.20866>
  • Estela-Uribe J.F., De Mendoza A., Trusler J.P.M.: Helmholtz energy, extended corresponding states and local composition model for fluid mixtures. Fluid Phase Equilibria 2004, 224, 125. <https://doi.org/10.1016/j.fluid.2004.04.006>
  • Estela-Uribe J.F., De Mendoza A., Trusler J.P.M.: Combined Helmholtz energy, extended corresponding states and local-composition model for fluid mixtures. Fluid Phase Equilibria 2004, 222-223, 25. <https://doi.org/10.1016/j.fluid.2004.06.006>
  • Hashemi Sh., Ghotbi C., Taghikhani V., Behzadi B.: Application of quasi-chemical models to liquid–liquid equilibrium calculations for ternary systems containing water, propionic acid and organic solvents. Fluid Phase Equilibria 2004, 226, 251. <https://doi.org/10.1016/j.fluid.2004.07.007>
  • Ehlker Gerhard H, Pfennig Andreas: Development of GEQUAC as a new group contribution method for strongly non-ideal mixtures. Fluid Phase Equilibria 2002, 203, 53. <https://doi.org/10.1016/S0378-3812(02)00182-6>
  • Lugo Luis, López Enriqueta R., Garcı́a Josefa, Comuñas Marı́a J.P., Fernández Josefa: Reply to the letter to the editor by J. Gmehling and J. Lohmann about the paper “Analysis of the molecular interactions of organic anhydride + alkane binary mixtures using the Nitta–Chao model” [Fluid Phase Equilib. 170 (2000) 69–85]. Fluid Phase Equilibria 2001, 189, 197. <https://doi.org/10.1016/S0378-3812(01)00597-0>
  • Egner Katja, Gaube Johann, Pfennig Andreas: GEQUAC, an excess Gibbs energy model describing associating and nonassociating liquid mixtures by a new model concept for functional groups. Fluid Phase Equilibria 1999, 158-160, 381. <https://doi.org/10.1016/S0378-3812(99)00137-5>
  • Novikov Vladimir B., Stolov Andrey A., Gorbatchuk Valery V., Solomonov Boris N.: Solvent effects on infrared spectroscopic and calorimetric characteristics of aliphatic ketones in binary solvent mixtures. J. Phys. Org. Chem. 1998, 11, 283. <https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<283::AID-POC12>3.0.CO;2-L>
  • Hofman T., Barbés B., Casanova C.: Solid‐liquid equilibria in n‐alkanol+n‐alkane systems. Prediction by several group‐contribution theories. Ber Bunsenges Phys Chem 1998, 102, 25. <https://doi.org/10.1002/bbpc.19981020105>
  • Hamad Esam Z.: Exact limits of mixture properties and excess thermodynamic functions. Fluid Phase Equilibria 1998, 142, 163. <https://doi.org/10.1016/S0378-3812(97)00266-5>
  • Egner K., Gaube J., Pfennig A.: GEQUAC, an excess Gibbs energy model for simultaneous description of associating and non‐associating liquid mixtures. Ber Bunsenges Phys Chem 1997, 101, 209. <https://doi.org/10.1002/bbpc.19971010208>
  • Kim Sunwook, Lee Yun Gun, Park Yun-Ok: New local composition model and mixing rule for the mixtures asymmetric both in size and energy. Fluid Phase Equilibria 1997, 140, 1. <https://doi.org/10.1016/S0378-3812(97)00187-8>
  • Hofman Tadeusz, Barbés Benigno, Casanova Carlos: Thermodynamic properties of n-alcohol–n-alkane mixtures. A comparative study of some group contribution theories. J. Chem. Soc., Faraday Trans. 1996, 92, 3565. <https://doi.org/10.1039/FT9969203565>
  • Hofman T.: Representation of excess enthalpy data by the quasichemical model. Fluid Phase Equilibria 1995, 107, 61. <https://doi.org/10.1016/0378-3812(94)02633-C>
  • Wang W., Vera J.H.: Liquid-liquid equilibrium calculations with excess Gibbs energy models based on the renormalization of Guggenheim's canonical partition function. Fluid Phase Equilibria 1995, 104, 207. <https://doi.org/10.1016/0378-3812(94)02650-P>
  • Wang W., Vera J.H.: Statistical thermodynamics of disordered and ordered systems. A properly normalized local order theory. Fluid Phase Equilibria 1993, 85, 1. <https://doi.org/10.1016/0378-3812(93)80001-4>
  • Demirel Yaşsar, Gecegörmez Hatice: Simultaneous representation of excess enthalpy and vapor—liquid equilibrium data by the NRTL and UNIQUAC models. Fluid Phase Equilibria 1991, 65, 111. <https://doi.org/10.1016/0378-3812(91)87020-A>
  • Ananth M. S., Ramachandran Sunder: Self‐consistent local composition model of electrolyte solutions. AIChE Journal 1990, 36, 370. <https://doi.org/10.1002/aic.690360307>
  • Guo Mingxue, Wang Wenchuan, Lu Huanzhang: Equations of state for pure and mixture square-well fluids I: Coordination number models. Fluid Phase Equilibria 1990, 60, 37. <https://doi.org/10.1016/0378-3812(90)85041-8>
  • Kemény S., Balog Gy., Radnai Gy., Sawinsky J., Rezessy G.: An improved quasilattice expression for liquid phase order-disorder. Fluid Phase Equilibria 1990, 54, 247. <https://doi.org/10.1016/0378-3812(90)85083-M>
  • Knox Dana E.: A one-parameter group-contribution model for liquid mixtures. J Solution Chem 1987, 16, 625. <https://doi.org/10.1007/BF00649089>
  • Lee Kun-Hong, Sandler Stanley I.: The generalized van der waals partition function—IV. Local composition models for mixtures of unequal-size molecules. Fluid Phase Equilibria 1987, 34, 113. <https://doi.org/10.1016/0378-3812(87)80028-6>
  • Johnston Keith P., Kim Sunwook, Wong Joseph M.: Local composition models for fluid mixtures over a wide density range. Fluid Phase Equilibria 1987, 38, 39. <https://doi.org/10.1016/0378-3812(87)90003-3>
  • Sandler Stanley I.: The generalized van der waals partition function. I. basic theory. Fluid Phase Equilibria 1985, 19, 238. <https://doi.org/10.1016/0378-3812(85)87019-9>
  • Renon Henri: N R T L: An empirical equation or an inspiring model for fluids mixtures properties?. Fluid Phase Equilibria 1985, 24, 87. <https://doi.org/10.1016/0378-3812(85)87039-4>
  • Lee L.L., Starling K.E.: The statistical mechanical local composition theory: The balance equations and concentration effects in nonideal mixtures. Fluid Phase Equilibria 1985, 21, 77. <https://doi.org/10.1016/0378-3812(85)90061-5>
  • Panayiotou Constantinos G.: A Two‐Fluid Theory for Liquid Mixtures with an Application to Poly(dimethyl Siloxane) Solutions etc. Ber Bunsenges Phys Chem 1984, 88, 694. <https://doi.org/10.1002/bbpc.19840880805>
  • Panayiotou Constantinos G.: A two‐fluid, non‐random‐mixing theory for liquid mixtures. Can J Chem Eng 1984, 62, 578. <https://doi.org/10.1002/cjce.5450620502>
  • Rowley R.L., Battler J.R.: Local-composition models and prediction of binary liquid-liquid binodal curves from heats of mixing. Fluid Phase Equilibria 1984, 18, 111. <https://doi.org/10.1016/0378-3812(84)87001-6>
  • Wilhelm Emmerich: Calorimetry: Its contributions to molecular thermodynamics of fluids. Thermochimica Acta 1983, 69, 1. <https://doi.org/10.1016/0040-6031(83)85065-5>
  • Fischer Johann: Remarks on molecular approaches to liquid mixtures. Fluid Phase Equilibria 1983, 10, 1. <https://doi.org/10.1016/0378-3812(83)80001-6>
  • Chao K.C., Leet W.A.: Local composition models and derivations. Fluid Phase Equilibria 1983, 11, 201. <https://doi.org/10.1016/0378-3812(83)80059-4>
  • Kehiaian H.V.: Group contribution methods for liquid mixtures: A critical review. Fluid Phase Equilibria 1983, 13, 243. <https://doi.org/10.1016/0378-3812(83)80098-3>
  • Hu Y., Azevedo E.G., Prausnitz J.M.: The molecular basis for local compositions in liquid mixture models. Fluid Phase Equilibria 1983, 13, 351. <https://doi.org/10.1016/0378-3812(83)80106-X>
  • Nakanishi Koichiro, Tanaka Hideki: Molecular dynamics studies on the local composition in Lennard-Jones liquid mixtures and mixtures of nonspherical molecules. Fluid Phase Equilibria 1983, 13, 371. <https://doi.org/10.1016/0378-3812(83)80108-3>
  • Lee L.L., Chung T.H., Starling K.E.: A molecular theory for the thermodynamic behavior of polar mixtures. I. The statistical-mechanical local-composition model. Fluid Phase Equilibria 1983, 12, 105. <https://doi.org/10.1016/0378-3812(83)85015-8>
  • Iwai Yoshio, Arai Yasuhiko: Note on the local area fraction. Fluid Phase Equilibria 1982, 9, 201. <https://doi.org/10.1016/0378-3812(82)80016-2>
  • Vera Juan H.: On the two-fluid local composition expressions. Fluid Phase Equilibria 1982, 8, 315. <https://doi.org/10.1016/0378-3812(82)80043-5>
  • Panayiotou C., Vera J. H.: Local compositions and local surface area fractions: A theoretical discussion. Can J Chem Eng 1981, 59, 501. <https://doi.org/10.1002/cjce.5450590416>
  • Brandani Vincenzo, Prausnitz John M.: A free-volume, non-random-mixing theory for liquid mixtures. Fluid Phase Equilibria 1981, 7, 233. <https://doi.org/10.1016/0378-3812(81)80010-6>
  • Kemény Sándor, Rasmussen Peter: A derivation of local composition expressions from partition functions. Fluid Phase Equilibria 1981, 7, 197. <https://doi.org/10.1016/0378-3812(81)85022-4>
  • Ashraf F.A., Vera J.H.: A simplified group method analysis. Fluid Phase Equilibria 1980, 4, 211. <https://doi.org/10.1016/0378-3812(80)80017-3>
  • Panayiotou C., Vera J.H.: The quasi-chemical approach for non-randomness in liquid mixtures. Expressions for local surfaces and local compositions with an application to polymer solutions. Fluid Phase Equilibria 1980, 5, 55. <https://doi.org/10.1016/0378-3812(80)80043-4>
  • FREDENSLUND A., RASMUSSEN P., MICHELSEN M.L.: RECENT PROGRESS IN THE COMPUTATION OF EQUILIBRIUM RATIOS. Chemical Engineering Communications 1980, 4, 485. <https://doi.org/10.1080/00986448008935923>
  • Nagata Isamu, Kawamura Yuji: Thermodynamics of alcohol-unassociated active component liquid mixtures. Chemical Engineering Science 1979, 34, 601. <https://doi.org/10.1016/0009-2509(79)85105-2>
  • Maurer G., Prausnitz J.M.: On the derivation and extension of the uniquac equation. Fluid Phase Equilibria 1978, 2, 91. <https://doi.org/10.1016/0378-3812(78)85002-X>
  • Renon Henri: Qualities of models for evaluation, representation and prediction of fluid phase equilibrium data. Fluid Phase Equilibria 1978, 2, 101. <https://doi.org/10.1016/0378-3812(78)85003-1>
  • Kehiaian Henry V.: Thermodynamik flüssiger Mischungen von Kohlenwasserstoffen mit verwandten Substanzen. Ber Bunsenges Phys Chem 1977, 81, 908. <https://doi.org/10.1002/bbpc.19770811007>