Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1975, 40, 1112-1118
https://doi.org/10.1135/cccc19751112

Calculation of the least energy path on the energy hypersurface

J. Pancíř

Crossref Cited-by Linking

  • Ebisawa Shuichi, Tsutsumi Takuro, Taketsugu Tetsuya: Geometric analysis of anharmonic downward distortion following paths. J Comput Chem 2021, 42, 27. <https://doi.org/10.1002/jcc.26430>
  • Bofill Josep Maria, Quapp Wolfgang: Calculus of variations as a basic tool for modelling of reaction paths and localisation of stationary points on potential energy surfaces. Molecular Physics 2020, 118, e1667035. <https://doi.org/10.1080/00268976.2019.1667035>
  • Lorquet J. C.: The separation of the reaction coordinate in transition state theory: Regularity and dimensionality reduction resulting from local symmetry. J. Chem. Phys. 2019, 150, 164310. <https://doi.org/10.1063/1.5092859>
  • Bofill Josep Maria, Quapp Wolfgang: The variational nature of the gentlest ascent dynamics and the relation of a variational minimum of a curve and the minimum energy path. Theor Chem Acc 2016, 135. <https://doi.org/10.1007/s00214-015-1767-7>
  • Martínez-Núñez Emilio: An automated method to find transition states using chemical dynamics simulations. J. Comput. Chem. 2015, 36, 222. <https://doi.org/10.1002/jcc.23790>
  • Martínez-Núñez Emilio: An automated transition state search using classical trajectories initialized at multiple minima. Phys. Chem. Chem. Phys. 2015, 17, 14912. <https://doi.org/10.1039/C5CP02175H>
  • Maeda Satoshi, Taketsugu Tetsuya, Morokuma Keiji, Ohno Koichi: Anharmonic Downward Distortion Following for Automated Exploration of Quantum Chemical Potential Energy Surfaces. BCSJ 2014, 87, 1315. <https://doi.org/10.1246/bcsj.20140189>
  • Schmidt Benjamin, Quapp Wolfgang: Search of manifolds of nonsymmetric Valley-Ridge inflection points on the potential energy surface of HCN. Theor Chem Acc 2013, 132. <https://doi.org/10.1007/s00214-012-1305-9>
  • Maeda Satoshi, Ohno Koichi, Morokuma Keiji: Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys. Chem. Chem. Phys. 2013, 15, 3683. <https://doi.org/10.1039/c3cp44063j>
  • Lempesis Nikolaos, Boulougouris Georgios C., Theodorou Doros N.: Temporal disconnectivity of the energy landscape in glassy systems. The Journal of Chemical Physics 2013, 138, 12A545. <https://doi.org/10.1063/1.4792363>
  • Bofill Josep Maria, Quapp Wolfgang, Caballero Marc: The Variational Structure of Gradient Extremals. J. Chem. Theory Comput. 2012, 8, 927. <https://doi.org/10.1021/ct200805d>
  • Schlegel H. Bernhard: Geometry optimization. WIREs Comput Mol Sci 2011, 1, 790. <https://doi.org/10.1002/wcms.34>
  • Maeda Satoshi, Morokuma Keiji: Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms. J. Chem. Theory Comput. 2011, 7, 2335. <https://doi.org/10.1021/ct200290m>
  • Ohno Koichi, Maeda Satoshi: Automated Exploration of Chemical Reaction Pathways. Mol. Sci. 2011, 5, A0042. <https://doi.org/10.3175/molsci.5.A0042>
  • Goodrow Anthony, Bell Alexis T., Head-Gordon Martin: A strategy for obtaining a more accurate transition state estimate using the growing string method. Chemical Physics Letters 2010, 484, 392. <https://doi.org/10.1016/j.cplett.2009.11.050>
  • Nalewajski Roman F.: Some applications of the virial theorem to molecular force fields: The zero virial reaction coordinate and diatomic potentials from the normalized kinetic field functions. Int. J. Quantum Chem. 2009, 14, 87. <https://doi.org/10.1002/qua.560140808>
  • Maeda Satoshi, Ohno Koichi, Morokuma Keiji: An Automated and Systematic Transition Structure Explorer in Large Flexible Molecular Systems Based on Combined Global Reaction Route Mapping and Microiteration Methods. J. Chem. Theory Comput. 2009, 5, 2734. <https://doi.org/10.1021/ct9003383>
  • Chakrabarti Dwaipayan, Wales David J.: Simulations of rigid bodies in an angle-axis framework. Phys. Chem. Chem. Phys. 2009, 11, 1970. <https://doi.org/10.1039/b818054g>
  • Fejer Szilard N., James Tim R., Hernández-Rojas Javier, Wales David J.: Energy landscapes for shells assembled from pentagonal and hexagonal pyramids. Phys. Chem. Chem. Phys. 2009, 11, 2098. <https://doi.org/10.1039/b818062h>
  • Quapp Wolfgang: Chemical reaction paths and calculus of variations. Theor Chem Account 2008, 121, 227. <https://doi.org/10.1007/s00214-008-0468-x>
  • Harding D. J., Davies R. D. L., Mackenzie S. R., Walsh T. R.: Oxides of small Rhodium clusters: Theoretical investigation of experimental reactivities. The Journal of Chemical Physics 2008, 129, 124304. <https://doi.org/10.1063/1.2981810>
  • Ohno K, Maeda S: Automated exploration of reaction channels. Phys. Scr. 2008, 78, 058122. <https://doi.org/10.1088/0031-8949/78/05/058122>
  • Ohno Koichi, Maeda Satoshi: Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, Formic Acid, and Their Metal-Substituted Analogues. J. Phys. Chem. A 2006, 110, 8933. <https://doi.org/10.1021/jp061149l>
  • Harding D., Mackenzie S. R., Walsh T. R.: Structural Isomers and Reactivity for Rh6 and Rh6+. J. Phys. Chem. B 2006, 110, 18272. <https://doi.org/10.1021/jp062603o>
  • Walsh T. R.: Relaxation dynamics and structural isomerism in Nb10 and Nb10+. The Journal of Chemical Physics 2006, 124, 204317. <https://doi.org/10.1063/1.2201997>
  • Maeda Satoshi, Ohno Koichi: Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method:  Applications to ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742. <https://doi.org/10.1021/jp0513162>
  • Carr Joanne M., Trygubenko Semen A., Wales David J.: Finding pathways between distant local minima. The Journal of Chemical Physics 2005, 122, 234903. <https://doi.org/10.1063/1.1931587>
  • McMillan Paul F., Clary David C., Wales David J.: The energy landscape as a unifying theme in molecular science. Phil. Trans. R. Soc. A. 2005, 363, 357. <https://doi.org/10.1098/rsta.2004.1497>
  • WALES DAVID J.: EXPLORING THE ENERGY LANDSCAPE. Int. J. Mod. Phys. B 2005, 19, 2877. <https://doi.org/10.1142/S0217979205031857>
  • Quapp Wolfgang: Reaction pathways and projection operators: Application to string methods. J. Comput. Chem. 2004, 25, 1277. <https://doi.org/10.1002/jcc.20053>
  • Hirsch Michael, Quapp Wolfgang: The reaction pathway of a potential energy surface as curve with induced tangent. Chemical Physics Letters 2004, 395, 150. <https://doi.org/10.1016/j.cplett.2004.07.079>
  • Trygubenko Semen A., Wales David J.: A doubly nudged elastic band method for finding transition states. The Journal of Chemical Physics 2004, 120, 2082. <https://doi.org/10.1063/1.1636455>
  • Trygubenko Semen A., Wales David J.: Analysis of cooperativity and localization for atomic rearrangements. The Journal of Chemical Physics 2004, 121, 6689. <https://doi.org/10.1063/1.1794653>
  • Wales David J., Dewsbury Peter E. J.: Effect of salt bridges on the energy landscape of a model protein. The Journal of Chemical Physics 2004, 121, 10284. <https://doi.org/10.1063/1.1810471>
  • Schlegel H. Bernhard: Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. J. Comput. Chem. 2003, 24, 1514. <https://doi.org/10.1002/jcc.10231>
  • Middleton Thomas F., Wales David J.: Energy landscapes of model glasses. II. Results for constant pressure. The Journal of Chemical Physics 2003, 118, 4583. <https://doi.org/10.1063/1.1545096>
  • QUAPP WOLFGANG: REDUCED GRADIENT METHODS AND THEIR RELATION TO REACTION PATHS. J. Theor. Comput. Chem. 2003, 02, 385. <https://doi.org/10.1142/S0219633603000604>
  • Mortenson Paul N., Evans David A., Wales David J.: Energy landscapes of model polyalanines. The Journal of Chemical Physics 2002, 117, 1363. <https://doi.org/10.1063/1.1484389>
  • Kumeda Yuko, Wales David J., Munro Lindsey J.: Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory. Chemical Physics Letters 2001, 341, 185. <https://doi.org/10.1016/S0009-2614(01)00334-7>
  • Mortenson Paul N., Wales David J.: Energy landscapes, global optimization and dynamics of the polyalanine Ac(ala)8NHMe. The Journal of Chemical Physics 2001, 114, 6443. <https://doi.org/10.1063/1.1343486>
  • Middleton Thomas F., Wales David J.: Energy landscapes of some model glass formers. Phys. Rev. B 2001, 64. <https://doi.org/10.1103/PhysRevB.64.024205>
  • Middleton Thomas F., Hernández-Rojas Javier, Mortenson Paul N., Wales David J.: Crystals of binary Lennard-Jones solids. Phys. Rev. B 2001, 64. <https://doi.org/10.1103/PhysRevB.64.184201>
  • Wales David J.: Energy Landscapes: An Overview. MRS Proc. 2001, 700. <https://doi.org/10.1557/PROC-700-S8.5>
  • Walsh Tiffany R., Wilson Mark, Sutton Adrian P.: Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms. The Journal of Chemical Physics 2000, 113, 9191. <https://doi.org/10.1063/1.1320057>
  • Malek Rachid, Mousseau Normand: Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique. Phys. Rev. E 2000, 62, 7723. <https://doi.org/10.1103/PhysRevE.62.7723>
  • Miller Mark A., Doye Jonathan P. K., Wales David J.: Structural relaxation in Morse clusters: Energy landscapes. The Journal of Chemical Physics 1999, 110, 328. <https://doi.org/10.1063/1.478067>
  • Doye Jonathan P. K., Miller Mark A., Wales David J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. The Journal of Chemical Physics 1999, 110, 6896. <https://doi.org/10.1063/1.478595>
  • Miller Mark A., Wales David J.: Energy landscape of a model protein. The Journal of Chemical Physics 1999, 111, 6610. <https://doi.org/10.1063/1.480011>
  • Doye Jonathan P. K., Miller Mark A., Wales David J.: Evolution of the potential energy surface with size for Lennard-Jones clusters. The Journal of Chemical Physics 1999, 111, 8417. <https://doi.org/10.1063/1.480217>
  • Munro Lindsey J., Wales David J.: Defect migration in crystalline silicon. Phys. Rev. B 1999, 59, 3969. <https://doi.org/10.1103/PhysRevB.59.3969>
  • Walsh Tiffany R., Wales David J.: Relaxation dynamics of C60. The Journal of Chemical Physics 1998, 109, 6691. <https://doi.org/10.1063/1.477319>
  • Berry R. Stephen, Elmaci Nuran, Rose John P., Vekhter Benjamin: Linking topography of its potential surface with the dynamics of folding of a protein model. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9520. <https://doi.org/10.1073/pnas.94.18.9520>
  • Berry R. Stephen: Many-dimensional potential surfaces: What they imply and how to think about them. Int. J. Quantum Chem. 1996, 58, 657. <https://doi.org/10.1002/(SICI)1097-461X(1996)58:6<657::AID-QUA8>3.0.CO;2-X>
  • Schön J. Christian, Jansen Martin: Auf dem Weg zur Syntheseplanung in der Festkörperchemie: Vorhersage existenzfähiger Strukturkandidaten mit Verfahren zur globalen Strukturoptimierung. Angew. Chem. 1996, 108, 1358. <https://doi.org/10.1002/ange.19961081204>
  • Quapp Wolfgang: A gradient-only algorithm for tracing a reaction path uphill to the saddle of a potential energy surface. Chemical Physics Letters 1996, 253, 286. <https://doi.org/10.1016/0009-2614(96)00255-2>
  • Rico Jaime Fernández, Aguado Alfredo, Paniagua Miguel: Searching critical points of fitted potential energy surfaces. Journal of Molecular Structure: THEOCHEM 1996, 371, 85. <https://doi.org/10.1016/S0166-1280(96)04699-4>
  • Wales David J., Munro Lindsey J.: Changes of Morphology and Capping of Model Transition Metal Clusters. J. Phys. Chem. 1996, 100, 2053. <https://doi.org/10.1021/jp952521s>
  • Bondensgård Kent, Jensen Frank: Gradient extremal bifurcation and turning points: An application to the H2CO potential energy surface. The Journal of Chemical Physics 1996, 104, 8025. <https://doi.org/10.1063/1.471495>
  • Ball Keith D., Berry R. Stephen, Kunz Ralph E., Li Feng-Yin, Proykova Ana, Wales David J.: From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters. Science 1996, 271, 963. <https://doi.org/10.1126/science.271.5251.963>
  • Wales David J., Stone Anthony J., Popelier Paul L.A.: Potential energy surfaces of several van der Waals complexes modelled using distributed multipoles. Chemical Physics Letters 1995, 240, 89. <https://doi.org/10.1016/0009-2614(95)00497-R>
  • Gregory Jonathon K., Wales David J., Clary David C.: Reaction path zero-point energy from diffusion Monte Carlo calculations. J. Chem. Phys. 1995, 102, 1592. <https://doi.org/10.1063/1.468891>
  • Jensen Frank: Locating transition structures by mode following: A comparison of six methods on the Ar8 Lennard-Jones potential. J. Chem. Phys. 1995, 102, 6706. <https://doi.org/10.1063/1.469144>
  • Kunz Ralph E., Berry R. Stephen: Statistical interpretation of topographies and dynamics of multidimensional potentials. The Journal of Chemical Physics 1995, 103, 1904. <https://doi.org/10.1063/1.469714>
  • Berry R. Stephen, Breitengraser-Kunz Ralph: Topography and Dynamics of Multidimensional Interatomic Potential Surfaces. Phys. Rev. Lett. 1995, 74, 3951. <https://doi.org/10.1103/PhysRevLett.74.3951>
  • Minyaev Ruslan M.: Reaction path as a gradient line on a potential energy surface. Int. J. Quantum Chem. 1994, 49, 105. <https://doi.org/10.1002/qua.560490206>
  • Wales David J.: Ab initio calculation of molecular structure by expansion of the electron density. Chemical Physics Letters 1994, 217, 302. <https://doi.org/10.1016/0009-2614(93)E1387-V>
  • Ruedenberg Klaus, Sun Jun-Qiang: Gradient fields of potential energy surfaces. J. Chem. Phys. 1994, 100, 5836. <https://doi.org/10.1063/1.467147>
  • Wales David J.: Rearrangements of 55-atom Lennard-Jones and (C60)55 clusters. J. Chem. Phys. 1994, 101, 3750. <https://doi.org/10.1063/1.467559>
  • Sun Jun‐Qiang, Ruedenberg Klaus: Locating transition states by quadratic image gradient descent on potential energy surfaces. The Journal of Chemical Physics 1994, 101, 2157. <https://doi.org/10.1063/1.467721>
  • Liotard Daniel A.: Algorithmic tools in the study of semiempirical potential surfaces. Int. J. Quantum Chem. 1992, 44, 723. <https://doi.org/10.1002/qua.560440505>
  • Schlegel H. Bernhard: Following gradient extremal paths. Theoret. Chim. Acta 1992, 83, 15. <https://doi.org/10.1007/BF01113240>
  • Dachsel Holger, Quapp Wolfgang: An analytical computation of Christoffel symbols for reaction coordinate and trajectory treatments under internal coordinates. J Math Chem 1991, 6, 77. <https://doi.org/10.1007/BF01192575>
  • Helgaker Trygve: Transition-state optimizations by trust-region image minimization. Chemical Physics Letters 1991, 182, 503. <https://doi.org/10.1016/0009-2614(91)90115-P>
  • Quapp W., Dachsel H., Heidrich D.: The mass weighting problem of potential energy surfaces for chemical reactions: dissociation and isomerisation pathways of HCN. Journal of Molecular Structure: THEOCHEM 1990, 205, 245. <https://doi.org/10.1016/0166-1280(90)85124-6>
  • Kupka H., Girardeau M.D., Ivanov C.I., Polansky O.E.: Nonlinear normal-mode-scattering-mode transformation. Chemical Physics 1990, 142, 403. <https://doi.org/10.1016/0301-0104(90)80035-V>
  • Shida Norihiro, Alml�f Jan E., Barbara Paul F.: Molecular vibrations in a gradient extremal path. Theoret. Chim. Acta 1989, 76, 7. <https://doi.org/10.1007/BF00526336>
  • J�rgensen Poul, Jensen Hans J�rgen A., Helgaker Trygve: A gradient extremal walking algorithm. Theoret. Chim. Acta 1988, 73, 55. <https://doi.org/10.1007/BF00526650>
  • Miller William H., Ruf Beverly A., Chang Yan-Tyng: A diabatic reaction path Hamiltonian. J. Chem. Phys. 1988, 89, 6298. <https://doi.org/10.1063/1.455395>
  • Basilevsky M. V.: The structural stability principle and branching points on multidimensional potential energy surfaces. Theoret. Chim. Acta 1987, 72, 63. <https://doi.org/10.1007/BF00526555>
  • Hoffman David K., Nord Ross S., Ruedenberg Klaus: Gradient extremals. Theoret. Chim. Acta 1986, 69, 265. <https://doi.org/10.1007/BF00527704>
  • Heidrich Dietmar, Quapp Wolfgang: Saddle points of index 2 on potential energy surfaces and their role in theoretical reactivity investigations. Theoret. Chim. Acta 1986, 70, 89. <https://doi.org/10.1007/BF00532206>
  • Carrington Tucker, Miller William H.: Reaction surface description of intramolecular hydrogen atom transfer in malonaldehyde. The Journal of Chemical Physics 1986, 84, 4364. <https://doi.org/10.1063/1.450058>
  • Bálint Imre, Bán Miklós I.: A procedure for determining reaction paths and saddle points. Int. J. Quantum Chem. 1984, 25, 667. <https://doi.org/10.1002/qua.560250405>
  • Havlas Zdeněk, Zahradník Rudolf: Theoretical studies of reaction mechanism in chemistry. Int. J. Quantum Chem. 1984, 26, 607. <https://doi.org/10.1002/qua.560260505>
  • Quapp Wolfgang, Heidrich Dietmar: Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems. Theoret. Chim. Acta 1984, 66, 245. <https://doi.org/10.1007/BF00549673>
  • Carrington Tucker, Miller William H.: Reaction surface Hamiltonian for the dynamics of reactions in polyatomic systems. J. Chem. Phys. 1984, 81, 3942. <https://doi.org/10.1063/1.448187>
  • Bálint I., Bán M. I.: Comments on energy minimization in subspaces of coordinates and on “chemical hysteresis”. Int. J. Quantum Chem. 1983, 24, 161. <https://doi.org/10.1002/qua.560240204>
  • Basilevsky M.V.: Modern development of the reaction coordinate concept. Journal of Molecular Structure: THEOCHEM 1983, 103, 139. <https://doi.org/10.1016/0166-1280(83)85015-5>
  • Scharfenberg Peter: An improved method for the evaluation of transition states. J. Comput. Chem. 1982, 3, 277. <https://doi.org/10.1002/jcc.540030302>
  • Basilevsky M.V.: The topography of potential energy surfaces. Chemical Physics 1982, 67, 337. <https://doi.org/10.1016/0301-0104(82)85194-X>
  • Basilevsky M.V., Shamov A.G.: The local definition of the Optimum ascent path on a multi-dimensional potential energy surface and its practical application for the location of saddle points. Chemical Physics 1981, 60, 347. <https://doi.org/10.1016/0301-0104(81)80170-X>
  • Müller Klaus: Reaktionswege auf mehrdimensionalen Energiehyperflächen. Angew. Chem. 1980, 92, 1. <https://doi.org/10.1002/ange.19800920104>
  • Müller Klaus: Reaction Paths on Multidimensional Energy Hypersurfaces. Angew. Chem. Int. Ed. Engl. 1980, 19, 1. <https://doi.org/10.1002/anie.198000013>
  • M�ller Klaus, Brown Leo D.: Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theoret. Chim. Acta 1979, 53, 75. <https://doi.org/10.1007/BF00547608>
  • Scharfenberg Peter: Invariance criteria and symmetry conservation rules for geometry optimizations. Theoret. Chim. Acta 1979, 53, 279. <https://doi.org/10.1007/BF00550282>
  • Nalewajski Roman F.: Self-consistent optimization of molecular geometries by semi-empirical force field method. Journal of Molecular Structure 1977, 40, 247. <https://doi.org/10.1016/0022-2860(77)80027-6>
  • Beran S., Jírû P., Wichterlová B., Zahrandík R.: Molecular orbital study of the catalytic oxidation of propylene on silver. React Kinet Catal Lett 1976, 5, 131. <https://doi.org/10.1007/BF02279780>
  • Carsky Petr, Zahradnik Rudolf: Radicals: their molecular orbitals, properties, and reactivity. Acc. Chem. Res. 1976, 9, 407. <https://doi.org/10.1021/ar50107a004>
  • PANCIR J.: ChemInform Abstract: CALCULATION OF THE LEAST ENERGY PATH ON THE ENERGY HYPERSURFACE. Chemischer Informationsdienst 1975, 6, no. <https://doi.org/10.1002/chin.197529036>