Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1975, 40, 2923-2934
https://doi.org/10.1135/cccc19752923

Kinetics of catalyzed reaction of methanol with water vapour

V. Pour, J. Bartoň and A. Benda

Crossref Cited-by Linking

  • Wei Yuan-Ke, Zhang Jun-Dong, Cheng Ze-Dong, Gao Qian-Peng, He Ya-Ling: Numerical study on novel parabolic trough solar receiver-reactors with double-channel structure catalyst particle packed beds by developing actual three-dimensional catalyst porosity distributions. Chemical Engineering Science 2024, 287, 119693. <https://doi.org/10.1016/j.ces.2023.119693>
  • Ranjekar Apoorva M., Yadav Ganapati D.: Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Ind. Eng. Chem. Res. 2021, 60, 89. <https://doi.org/10.1021/acs.iecr.0c05041>
  • Bepari Sujoy, Kuila Debasish: Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. International Journal of Hydrogen Energy 2020, 45, 18090. <https://doi.org/10.1016/j.ijhydene.2019.08.003>
  • Li Junhui, Gong Qing, Liu Yifei, Kang Rongrong, Yang Chengguang, Qiu Minghuang, Hu Zhonghua, Zhu Zhirong: Insight into the Formation of COX By‐Products in Methanol‐to‐Aromatics Reaction over Zn/HZSM‐5: Significantly Affected by the Chemical State of Surface Zn Species. ChemCatChem 2019, 11, 4755. <https://doi.org/10.1002/cctc.201901226>
  • Lytkina A. A., Orekhova N. V., Yaroslavtsev A. B.: Catalysts for the Steam Reforming and Electrochemical Oxidation of Methanol. Inorg Mater 2018, 54, 1315. <https://doi.org/10.1134/S0020168518130034>
  • Trincado Monica, Vogt Matthias: CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol. Physical Sciences Reviews 2018, 3. <https://doi.org/10.1515/psr-2017-0014>
  • Thattarathody Rajesh, Sheintuch Moshe: Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst. Applied Catalysis A: General 2017, 540, 47. <https://doi.org/10.1016/j.apcata.2017.04.012>
  • Wichert M., Zapf R., Ziogas A., Kolb G., Klemm E.: Kinetic investigations of the steam reforming of methanol over a Pt/In 2 O 3 /Al 2 O 3 catalyst in microchannels. Chemical Engineering Science 2016, 155, 201. <https://doi.org/10.1016/j.ces.2016.08.009>
  • Chen Yongping, Lu Pengfei, Zhang Chengbin, Huang Xiangyong, Yao Feng: Molecular mechanisms for initial step of methanol dehydrogenation on metal surface. Journal of Power Sources 2016, 332, 30. <https://doi.org/10.1016/j.jpowsour.2016.09.107>
  • Zhang Lei, Pan Liwei, Ni Changjun, Sun Tianjun, Zhao Shengsheng, Wang Shudong, Wang Anjie, Hu Yongkang: CeO2–ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming. International Journal of Hydrogen Energy 2013, 38, 4397. <https://doi.org/10.1016/j.ijhydene.2013.01.053>
  • Sá Sandra, Silva Hugo, Brandão Lúcia, Sousa José M., Mendes Adélio: Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental 2010, 99, 43. <https://doi.org/10.1016/j.apcatb.2010.06.015>
  • Lebarbier V., Dagle R., Conant T., Vohs J. M., Datye A. K., Wang Y.: CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts for Methanol Steam Reforming. Catal Lett 2008, 122, 223. <https://doi.org/10.1007/s10562-008-9407-7>
  • Pfeifer P., Kölbl A., Schubert K.: Kinetic investigations on methanol steam reforming on PdZn catalysts in microchannel reactors and model transfer into the pressure gap region. Catalysis Today 2005, 110, 76. <https://doi.org/10.1016/j.cattod.2005.09.014>
  • Purnama H, Ressler T, Jentoft R.E, Soerijanto H, Schlögl R, Schomäcker R: CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General 2004, 259, 83. <https://doi.org/10.1016/j.apcata.2003.09.013>
  • Agrell Johan, Germani Gabriele, Järås Sven G., Boutonnet Magali: Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Applied Catalysis A: General 2003, 242, 233. <https://doi.org/10.1016/S0926-860X(02)00517-3>
  • Agrell Johan, Boutonnet Magali, Fierro José L.G: Production of hydrogen from methanol over binary Cu/ZnO catalysts. Applied Catalysis A: General 2003, 253, 213. <https://doi.org/10.1016/S0926-860X(03)00521-0>
  • Agrell Johan, Birgersson Henrik, Boutonnet Magali: Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources 2002, 106, 249. <https://doi.org/10.1016/S0378-7753(01)01027-8>
  • Urban Peter M., Funke Anett, Müller Jens T., Himmen Michael, Docter Andreas: Catalytic processes in solid polymer electrolyte fuel cell systems. Applied Catalysis A: General 2001, 221, 459. <https://doi.org/10.1016/S0926-860X(01)00819-5>
  • Trimm David L., Önsan Z. Ilsen: ONBOARD FUEL CONVERSION FOR HYDROGEN-FUEL-CELL-DRIVEN VEHICLES. Catalysis Reviews 2001, 43, 31. <https://doi.org/10.1081/CR-100104386>
  • Ma L., Gong B., Tran T., Wainwright M.S.: Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catalysis Today 2000, 63, 499. <https://doi.org/10.1016/S0920-5861(00)00496-X>
  • Breen John P, Ross Julian R.H: Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catalysis Today 1999, 51, 521. <https://doi.org/10.1016/S0920-5861(99)00038-3>
  • Takezawa N., Iwasa N.: Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today 1997, 36, 45. <https://doi.org/10.1016/S0920-5861(96)00195-2>
  • Ma L., Jiang C., Adesina A.A., Trimm D.L., Wainwright M.S.: Simulation studies of autothermal reactor system for H2 production from methanol steam reforming. The Chemical Engineering Journal and the Biochemical Engineering Journal 1996, 62, 103. <https://doi.org/10.1016/0923-0467(95)03058-1>
  • Jiang C.J., Trimm D.L., Wainwright M.S., Cant N.W.: Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Applied Catalysis A: General 1993, 97, 145. <https://doi.org/10.1016/0926-860X(93)80081-Z>
  • Jiang C.J., Trimm D.L., Wainwright M.S., Cant N.W.: Kinetic study of steam reforming of methanol over copper-based catalysts. Applied Catalysis A: General 1993, 93, 245. <https://doi.org/10.1016/0926-860X(93)85197-W>
  • Amphlett J. C., Mann R. F., Weir R. D.: Hydrogen production by the catalytic steam reforming of methanol: Part 3: Kinetics of methanol decomposition using C18HC catalyst. Can J Chem Eng 1988, 66, 950. <https://doi.org/10.1002/cjce.5450660609>
  • Thérien Normand, Tessier Patrick: Modélisation et simulation de la décomposition catalytique du méthanol dans un réacteur à lit fixe. Can J Chem Eng 1987, 65, 950. <https://doi.org/10.1002/cjce.5450650610>
  • Amphlett J. C., Evans M. J., Mann R. F., Weir R. D.: Hydrogen production by the catalytic steam reforming of methanol: Part 2: Kinetics of methanol decomposition using girdler G66B catalyst. Can J Chem Eng 1985, 63, 605. <https://doi.org/10.1002/cjce.5450630412>
  • Santacesaria E., Carrá S.: Kinetics of catalytic steam reforming of methanol in a cstr reactor. Applied Catalysis 1983, 5, 345. <https://doi.org/10.1016/0166-9834(83)80162-6>
  • Amphlett J. C., Evans M. J., Jones R. A., Mann R. F., Weir R. D.: Hydrogen production by the catalytic steam reforming of methanol part 1: The thermodynamics. Can J Chem Eng 1981, 59, 720. <https://doi.org/10.1002/cjce.5450590612>
  • Kobayashi H., Takezawa N., Minochi C.: Methanol-reforming reaction over copper-containing catalysts—The effects of anions and copper loading in the preparation of the catalysts by kneading method. Journal of Catalysis 1981, 69, 487. <https://doi.org/10.1016/0021-9517(81)90184-6>
  • Domka F., Łaniecki M.: Iron-chromium catalysts in the conversion of methanol with water vapor. React Kinet Catal Lett 1978, 8, 507. <https://doi.org/10.1007/BF02074466>
  • POUR V., BARTON J., BENDA A.: ChemInform Abstract: KINETICS OF CATALYZED REACTION OF METHANOL WITH WATER VAPOUR. Chemischer Informationsdienst 1975, 6. <https://doi.org/10.1002/chin.197552132>