Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1971, 36, 932-935
https://doi.org/10.1135/cccc19710932

Mechanism of carbon-halogen bond cleavage. III. Electrochemical preparation of highly strained hydrocarbons

M. R. Rifi

Crossref Cited-by Linking

  • Mokhov V. M., Butov G. M., Novakov I. A.: 1,3-Dehydroadamantane and Its Derivatives: A Versatile Synthetic Platform for the Preparation of Functional Compounds with a Cage Structure. A Review. Dokl Chem 2023, 511, 149. <https://doi.org/10.1134/S0012500823600566>
  • Моkhоv V. М., Butоv G. М., Novakov I. А.: 1,3-DEHYDROADAMANTANE AND ITS DERIVATIVES: A VERSATILE SYNTHETIC PLATFORM FOR PREPARATION OF FUNCTIONAL COMPOUNDS WITH A CAGE STRUCTURE. A REVIEW. Doklady Rossijskoj akademii nauk. Himiâ, nauki o materialah. 2023, 511, 3. <https://doi.org/10.31857/S2686953522600891>
  • Duñach Elisabet, José Medeiros Maria, Olivero Sandra: Intramolecular reductive cyclisations using electrochemistry: development of environmentally friendly synthetic methodologies. New J. Chem. 2006, 30, 1534. <https://doi.org/10.1039/B608228A>
  • Vanalabhpatana Parichatr, Peters Dennis G.: Catalytic Reduction of 1,6-Dihalohexanes by Nickel(I) Salen Electrogenerated at Glassy Carbon Cathodes in Dimethylformamide. J. Electrochem. Soc. 2005, 152, E222. <https://doi.org/10.1149/1.1928168>
  • Pritts Wayne A., Peters Dennis G.: Electrochemical reduction of 1,4-dihalobutanes at carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry 1995, 380, 147. <https://doi.org/10.1016/0022-0728(94)03580-V>
  • Hoffmann Joachim, Voß Jürgen: Elektroreduktion organischer Verbindungen, 20[ Darstellung von Bicyclo[n.1.0]alkanen durch elektrochemische Reduktion von 1,3‐Dibromcycloalkanen. Chem. Ber. 1992, 125, 1415. <https://doi.org/10.1002/cber.19921250619>
  • Bart John C., Peters Dennis G.: Electrochemical reduction of 1,10-dihalodecanes at mercury cathodes in dimethylformamide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 280, 129. <https://doi.org/10.1016/0022-0728(90)87089-3>
  • Giomini C., Inesi A., Zeuli E.: Heterogeneous electrode-assisted ionization in the reduction of α,γ-dibromoesters. Electrochimica Acta 1984, 29, 1107. <https://doi.org/10.1016/0013-4686(84)87162-5>
  • Satoh Shohei, Suginome Hiroshi, Tokuda Masao: Electrochemical Additions of the Allyl and the Benzyl Groups of Allyl and Benzyl Halides to Acetone. Bulletin of the Chemical Society of Japan 1983, 56, 1791. <https://doi.org/10.1246/bcsj.56.1791>
  • Satoh Shohei, Suginome Hiroshi, Tokuda Masao: Electrochemical Conjugate Additions of the Allyl Groups in Substituted Allyl Halides to α,β-Unsaturated Esters. Bulletin of the Chemical Society of Japan 1981, 54, 3456. <https://doi.org/10.1246/bcsj.54.3456>
  • Merz Andreas, Thumm Gerhard: Elektrochemisch induzierte Fritsch‐Buttenberg‐Wiechell‐Umlagerung von 1,1‐Diaryl‐2,2‐dihalogenethylenen. Justus Liebigs Ann. Chem. 1978, 1978, 1526. <https://doi.org/10.1002/jlac.197819780917>
  • Leibzon V. N., Mendkovich A. S., Mairanovskii S. G., Klimova T. A., Krayushkin M. M., Sevost'yanova V. V., Novikov S. S.: Electroreduction of polyhedrane derivatives 2. Transannular interaction of the halide atoms in 2,2,6,6-di(ethylenedioxy)-3,7-dibromobicyclo[3.3.1]nonane. Russ Chem Bull 1978, 27, 1761. <https://doi.org/10.1007/BF00929219>
  • Brillas E., Costa J.M.: Polarographic reduction of 1,4-dihalides of rans-2-butene. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1976, 69, 435. <https://doi.org/10.1016/S0022-0728(76)80147-7>
  • Fry Albert J., Chung Ling-Ling: Oxyphosphirane intermediates in the electrochemical reduction of α,α′-dihalophosphinates. Tetrahedron Letters 1976, 17, 645. <https://doi.org/10.1016/S0040-4039(00)74586-2>
  • Gol'din M. M., D'yachenko A. I., Feoktistov L. G.: Electroreduction of tetrabromoneopentane and 1,1-bis-(bromomethyl) cyclopropane. Russ Chem Bull 1975, 24, 2494. <https://doi.org/10.1007/BF00921678>
  • Andrieux C.P., Savéant J.M.: Electrochemical cyclization. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1974, 53, 165. <https://doi.org/10.1016/S0022-0728(74)80132-4>
  • Bohm H., Kalo J., Yarnitzky Ch., Ginsburg D.: Attempted synthesis of a substituted [2.2.2]propellane derivative from triptycene derivatives. Tetrahedron 1974, 30, 217. <https://doi.org/10.1016/S0040-4020(01)97238-2>
  • Wiberg Kenneth B., Epling Gary A.: Electrochemical reduction of 1,3- and 1,4-dibromides: evidence for a two-step process. Tetrahedron Letters 1974, 15, 1119. <https://doi.org/10.1016/S0040-4039(01)82422-9>
  • Fleischmann M., Mengoli G., Pletcher D.: The reduction of simple alkyl iodides at tin cathodes in dimethylformamide. Electrochimica Acta 1973, 18, 231. <https://doi.org/10.1016/0013-4686(73)80018-0>
  • Brown O.R., Gonzalez E.R.: Reduction of α-ω dibromoalkanes on aluminium and mercury cathodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 43, 215. <https://doi.org/10.1016/S0022-0728(73)80492-9>
  • Fry Albert J., Scoggins Richard: Concerning the intermediacy of cyclopropanones in the electrochemical reduction of α,α1-dibromoketones. Tetrahedron Letters 1972, 13, 4079. <https://doi.org/10.1016/S0040-4039(01)94242-X>
  • RIFI M. R.: ChemInform Abstract: MECHANISMUS DER SPALTUNG EINER KOHLENSTOFF‐HALOGEN‐BINDUNG 3. MITT. ELEKTROCHEMISCHE DARST. HOCH GESPANNTER KOHLENWASSERSTOFFE. Chemischer Informationsdienst. Organische Chemie 1971, 2. <https://doi.org/10.1002/chin.197124106>
  • Fry Albert J., Britton Wayne E.: Electrochemical reduction of the stereoisomeric 2,4-dibromopentanes to cyclopropanes. Evidence for a stepwise mechanism. Tetrahedron Letters 1971, 12, 4363. <https://doi.org/10.1016/S0040-4039(01)97442-8>