Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1969, 34, 1684-1689
https://doi.org/10.1135/cccc19691684

Nucleic acid components and their analogues. CXXIII. Synthesis of homouridine and homocytidine

M. Bobek and J. Farkaš

Crossref Cited-by Linking

  • Ahmed Ajaz, Sakander Norein, Mukherjee Debaraj: Lewis Acid Catalysed Regioselective Access of Novel C‐2 Homo‐Pyranose Nucleosides From 2‐Acetoxy Methyl Glycals. ChemistrySelect 2023, 8. <https://doi.org/10.1002/slct.202300578>
  • Carnero Alejandro, Martín-Nieves Virginia, Sanghvi Yogesh S., Russel Olivia O., Bassit Leda, Schinazi Raymond F., Fernández Susana, Ferrero Miguel: Novel 1′-homo-N-2′-deoxy-α-nucleosides: synthesis, characterization and biological activity. RSC Adv. 2020, 10, 15815. <https://doi.org/10.1039/D0RA03254A>
  • Kosar Naveen, Ayub Khurshid, Gilani Mazhar Amjad, Mahmood Tariq: Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J Mol Model 2019, 25. <https://doi.org/10.1007/s00894-019-3930-x>
  • Kobayashi Yuka, Tanahashi Rena, Yamaguchi Yui, Hatae Noriyuki, Kobayashi Masanori, Ueno Yoshihito, Yoshimatsu Mitsuhiro: Ni–Pd Catalyzed Cyclization of Sulfanyl 1,6-Diynes: Synthesis of 1′-Homonucleoside Analogues. J. Org. Chem. 2017, 82, 2436. <https://doi.org/10.1021/acs.joc.6b02841>
  • Wróblewski Andrzej E., Głowacka Iwona E., Piotrowska Dorota G.: 1′-Homonucleosides and their structural analogues: A review. European Journal of Medicinal Chemistry 2016, 118, 121. <https://doi.org/10.1016/j.ejmech.2016.04.034>
  • Höfler Katharina, Zimmermann Tristan, Peña Fuentes Dilver, Vogel Christian, Meier Chris: Synthesis of Homo‐C‐Nucleoside Phosphoramidites and Their Site‐Specific Incorporation into Oligonucleotides. Eur J Org Chem 2015, 2015, 6841. <https://doi.org/10.1002/ejoc.201500996>
  • Saladino Raffaele, Neri Veronica, Checconi Paola, Celestino Ignacio, Nencioni Lucia, Palamara Anna Teresa, Crucianelli Marcello: Synthesis of 2′‐Deoxy‐1′‐homo‐N‐nucleosides with Anti‐Influenza Activity by Catalytic Methyltrioxorhenium (MTO)/H2O2 Oxyfunctionalization. Chemistry A European J 2013, 19, 2392. <https://doi.org/10.1002/chem.201201285>
  • Saladino Raffaele, Botta Giorgia, Pino Samanta, Costanzo Giovanna, Di Mauro Ernesto: Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012, 41, 5526. <https://doi.org/10.1039/c2cs35066a>
  • Bisht Surendra Singh, Jaiswal Natasha, Sharma Anindra, Fatima Seerat, Sharma Rahul, Rahuja Neha, Srivastava A.K., Bajpai Vikas, Kumar Brijesh, Tripathi Rama P.: A convenient synthesis of novel pyranosyl homo-C-nucleosides and their antidiabetic activities. Carbohydrate Research 2011, 346, 1191. <https://doi.org/10.1016/j.carres.2011.03.006>
  • Pryde David C., Middleton Donald S., Stephenson Peter T., Wainwright Philip, Maddaford Adrian, Zhang Xiurong, Leese David, Glen Rebecca, Hart James, Forrest Neil, Guyot Thierry: Practical synthetic routes to carbon-substituted nucleosides. Tetrahedron Letters 2011, 52, 6415. <https://doi.org/10.1016/j.tetlet.2011.09.074>
  • Busca Patricia, McCort Isabelle, Prangé Thierry, Le Merrer Yves: Synthesis of C‐Nucleosidic ATP Mimics as Potential FGFR3 Inhibitors. Eur J Org Chem 2006, 2006, 2403. <https://doi.org/10.1002/ejoc.200500999>
  • Saladino Raffaele, Ciambecchini Umberto, Hanessian Stephen: Synthesis of 1′‐Homo‐N‐nucleosides from Hexitols. Eur J Org Chem 2003, 2003, 4401. <https://doi.org/10.1002/ejoc.200300328>
  • Lamberth Clemens: NUCLEOSIDES WITH A CARBON BRIDGE BETWEEN SUGAR AND NUCLEOBASE: THE CHEMISTRY OF 1′-HOMONUCLEOSIDES AND REVERSED NUCLEOSIDES. A REVIEW. Organic Preparations and Procedures International 2002, 34, 149. <https://doi.org/10.1080/00304940209355752>
  • Bimwala R. Mampuya, Vogel Pierre: Total synthesis of 2‐(β‐D‐ribofuranosyl)thiazole‐4‐carboxamide (Tiazofurin) and of precursors of ribo‐C‐nucleosides. Helvetica Chimica Acta 1989, 72, 1825. <https://doi.org/10.1002/hlca.19890720819>
  • Sato Tsuneo, Noyori Ryoji: General Synthesis of Homo-C-nucleosides. Bulletin of the Chemical Society of Japan 1983, 56, 2700. <https://doi.org/10.1246/bcsj.56.2700>
  • Boullanger P., Marmet D., Descotes G.: Synthesis of glycosyl isocyanides. Tetrahedron 1979, 35, 163. <https://doi.org/10.1016/0040-4020(79)85021-8>
  • Tadano Kin-ichi, Horiuchi Sumio, Suami Tetsuo: Nucleoside Analogs. 5. Synthesis of Carbocyclic Pyrimidine Nucleoside Analogs. Bulletin of the Chemical Society of Japan 1978, 51, 897. <https://doi.org/10.1246/bcsj.51.897>
  • El Khadem Hassan S., El Ashry El Sayed H.: Synthesis of a c-nucleoside analog of the antibiotic cordycepin. Carbohydrate Research 1974, 32, 339. <https://doi.org/10.1016/S0008-6215(00)82110-2>
  • Acton Edward M., Fujiwara Allan N., Goodman Leon, Henry David W.: Synthetic C-nucleosides: 3-(α- and β-D-arabinofuranosyl)pyrazolo[4,3-d]pyrimidine-5,7-diones. Carbohydrate Research 1974, 33, 135. <https://doi.org/10.1016/S0008-6215(00)82947-X>
  • El Khadem Hassan S., El Ashry El Sayed H.: Synthesis of cordycepin-C [8-(3′-deoxy-β-D-erythro-pentofuranosyl)adenine]. Carbohydrate Research 1973, 29, 525. <https://doi.org/10.1016/S0008-6215(00)83043-8>
  • Winkley Michael W.: The synthesis of the α-d-anomers of “homonucleosides”: derivatives of 2,5-anhydro-d-altritol. Carbohydrate Research 1973, 31, 245. <https://doi.org/10.1016/S0008-6215(00)86189-3>
  • Ogawa Tomoya, Pernet André G., Hanessian Stephen: Nouvelles methodes de -fonctionnalisation anomerique: acces aux precurseurs chimiques des -nucleosides. Tetrahedron Letters 1973, 14, 3543. <https://doi.org/10.1016/S0040-4039(01)86965-3>
  • Pernet André G., Ogawa Tomoya, Hanessian Stephen: Synthese, assignation anomerique et epimerisation des -pentofuranosyle malonates. Tetrahedron Letters 1973, 14, 3547. <https://doi.org/10.1016/S0040-4039(01)86966-5>
  • Coxon Bruce: STUDIES OF CARBOHYDRATES BY FOURIER TRANSFORM NMR SPECTROSCOPY: STRUCTURAL ANALYSIS OF GLYCOSYL CYANIDES. Annals of the New York Academy of Sciences 1973, 222, 952. <https://doi.org/10.1111/j.1749-6632.1973.tb15317.x>
  • Giovanninetti G., Nobile L., Amorosa M., Defaye J.: 3,6-Anhydro-1-désoxy-1-(pyrimidine-1-yl)-D-mannitols, homoanaloques des α-D-érythrofuranosyl-nucléosides. Carbohydrate Research 1972, 21, 320. <https://doi.org/10.1016/S0008-6215(00)82162-X>
  • Defaye Jacques, Machon Zdzislaw: Homoanalogues des β-d-aldofuranosyl nucléosides. Carbohydrate Research 1972, 24, 235. <https://doi.org/10.1016/S0008-6215(00)85059-4>
  • Nobile Luciano, Giovanninetti Giuseppe, Balbi Theodoro Pozzo, Amorosa Michele, Defaye Jacques: Homoanalogues des aldofuranosyles nucléosides. Carbohydrate Research 1972, 24, 489. <https://doi.org/10.1016/S0008-6215(00)85082-X>
  • Montgomery John A., Hewson Kathleen: 1‐(Adenm‐9‐yl)‐2,5‐anhydro‐1‐deoxy‐d‐allitol, a homolog of adenosine. Journal of Heterocyclic Chem 1970, 7, 443. <https://doi.org/10.1002/jhet.5570070239>
  • Bobek M., Farkaš J., Šorm F.: Synthesis of 3-(β-D-ribofuranosyl)-5,7-dihydroxy-1H-pyrazolo/4,3-d/pyrimidine. Tetrahedron Letters 1970, 11, 4611. <https://doi.org/10.1016/S0040-4039(00)89431-9>