Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1969, 34, 3982-3985
https://doi.org/10.1135/cccc19693982

Solubility of carbon dioxide in water at pressures up to 40 atm

J. Matouš, J. Šobr, J. P. Novák and J. Pick

Crossref Cited-by Linking

  • Mousavi Ramin, Chapoy Antonin, Burgass Rod: CO2 solubility in aqueous solution of salts: Experimental study and thermodynamic modelling. Greenhouse Gases 2024, 14, 791. <https://doi.org/10.1002/ghg.2298>
  • Mahmoudzadeh Atena, Amiri-Ramsheh Behnam, Atashrouz Saeid, Abedi Ali, Abuswer Meftah Ali, Ostadhassan Mehdi, Mohaddespour Ahmad, Hemmati-Sarapardeh Abdolhossein: Modeling CO2 solubility in water using gradient boosting and light gradient boosting machine. Sci Rep 2024, 14. <https://doi.org/10.1038/s41598-024-63159-9>
  • Khoshraftar Zohreh, Ghaemi Ahad: Prediction of CO2 solubility in water at high pressure and temperature via deep learning and response surface methodology. Case Studies in Chemical and Environmental Engineering 2023, 7, 100338. <https://doi.org/10.1016/j.cscee.2023.100338>
  • dos Santos Pedro F., Andre Laurent, Ducousso Marion, Lassin Arnault, Contamine François, Lach Adeline, Parmentier Marc, Cézac Pierre: An improved model for CO2 solubility in aqueous Na+–Cl−–SO42− systems up to 473.15 K and 40 MPa. Chemical Geology 2021, 120443. <https://doi.org/10.1016/j.chemgeo.2021.120443>
  • Hemmati-Sarapardeh Abdolhossein, Amar Menad Nait, Soltanian Mohamad Reza, Dai Zhenxue, Zhang Xiaoying: Modeling CO2 Solubility in Water at High Pressure and Temperature Conditions. Energy Fuels 2020, 34, 4761. <https://doi.org/10.1021/acs.energyfuels.0c00114>
  • Pabsch Daniel, Held Christoph, Sadowski Gabriele: Modeling the CO2 Solubility in Aqueous Electrolyte Solutions Using ePC-SAFT. J. Chem. Eng. Data 2020, 65, 5768. <https://doi.org/10.1021/acs.jced.0c00704>
  • Zhang Kaiqiang, Liu Lirong, Huang Guohe: Nanoconfined Water Effect on CO2 Utilization and Geological Storage. Geophysical Research Letters 2020, 47. <https://doi.org/10.1029/2020GL087999>
  • Esene Cleverson, Rezaei Nima, Aborig Amer, Zendehboudi Sohrab: Comprehensive review of carbonated water injection for enhanced oil recovery. Fuel 2019, 237, 1086. <https://doi.org/10.1016/j.fuel.2018.08.106>
  • Ranjbar Ehsan, Ghaderi Seyyed M., Nourozieh Hossein, Kumar Anjani, Takbiri-Borujeni Ali: Two-phase and three-phase equilibrium K-values for modelling of non-condensable gas Co-Injection processes. Journal of Petroleum Science and Engineering 2019, 173, 525. <https://doi.org/10.1016/j.petrol.2018.09.091>
  • Ahmadi Pezhman, Chapoy Antonin: CO 2 solubility in formation water under sequestration conditions. Fluid Phase Equilibria 2018, 463, 80. <https://doi.org/10.1016/j.fluid.2018.02.002>
  • Shabani Babak, Vilcáez Javier: Prediction of CO2-CH4-H2S-N2 gas mixtures solubility in brine using a non-iterative fugacity-activity model relevant to CO2-MEOR. Journal of Petroleum Science and Engineering 2017, 150, 162. <https://doi.org/10.1016/j.petrol.2016.12.012>
  • Steel Luc, Liu Qi, Mackay Eric, Maroto-Valer M. Mercedes: CO2 solubility measurements in brine under reservoir conditions: A comparison of experimental and geochemical modeling methods. Greenhouse Gas Sci Technol 2016, 6, 197. <https://doi.org/10.1002/ghg.1590>
  • Messabeb Hamdi, Contamine François, Cézac Pierre, Serin Jean Paul, Gaucher Eric C.: Experimental Measurement of CO2 Solubility in Aqueous NaCl Solution at Temperature from 323.15 to 423.15 K and Pressure of up to 20 MPa. J. Chem. Eng. Data 2016, 61, 3573. <https://doi.org/10.1021/acs.jced.6b00505>
  • Li Jun, Wei Lingli, Li Xiaochun: An improved cubic model for the mutual solubilities of CO2–CH4–H2S–brine systems to high temperature, pressure and salinity. Applied Geochemistry 2015, 54, 1. <https://doi.org/10.1016/j.apgeochem.2014.12.015>
  • Blyton Christopher A.J., Bryant Steven L.: Measurement of the intrinsic mass transfer coefficient for CO2 dissolution in brine. Chemical Engineering Science 2013, 101, 461. <https://doi.org/10.1016/j.ces.2013.06.028>
  • Mao Shide, Zhang Dehui, Li Yongquan, Liu Ningqiang: An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2–H2O–NaCl fluid inclusions. Chemical Geology 2013, 347, 43. <https://doi.org/10.1016/j.chemgeo.2013.03.010>
  • Téllez-Arredondo Pablo, Medeiros Milton: Modeling CO2 and H2S solubilities in aqueous alkanolamine solutions via an extension of the Cubic-Two-State equation of state. Fluid Phase Equilibria 2013, 344, 45. <https://doi.org/10.1016/j.fluid.2013.01.005>
  • Dubacq Benoît, Bickle Mike J., Evans Katy A.: An activity model for phase equilibria in the H2O–CO2–NaCl system. Geochimica et Cosmochimica Acta 2013, 110, 229. <https://doi.org/10.1016/j.gca.2013.02.008>
  • Springer Ronald D., Wang Zheming, Anderko Andrzej, Wang Peiming, Felmy Andrew R.: A thermodynamic model for predicting mineral reactivity in supercritical carbon dioxide: I. Phase behavior of carbon dioxide–water–chloride salt systems across the H2O-rich to the CO2-rich regions. Chemical Geology 2012, 322-323, 151. <https://doi.org/10.1016/j.chemgeo.2012.07.008>
  • Lucile Floriane, Cézac Pierre, Contamine François, Serin Jean-Paul, Houssin Deborah, Arpentinier Philippe: Solubility of Carbon Dioxide in Water and Aqueous Solution Containing Sodium Hydroxide at Temperatures from (293.15 to 393.15) K and Pressure up to 5 MPa: Experimental Measurements. J. Chem. Eng. Data 2012, 57, 784. <https://doi.org/10.1021/je200991x>
  • Liu Yuanhui, Hou Minqiang, Ning Hui, Yang Dezhong, Yang Guanying, Han Buxing: Phase Equilibria of CO2 + N2 + H2O and N2 + CO2 + H2O + NaCl + KCl + CaCl2 Systems at Different Temperatures and Pressures. J. Chem. Eng. Data 2012, 57, 1928. <https://doi.org/10.1021/je3000958>
  • Yan Wei, Huang Shengli, Stenby Erling H.: Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. International Journal of Greenhouse Gas Control 2011, 5, 1460. <https://doi.org/10.1016/j.ijggc.2011.08.004>
  • Zoghi Ali T., Feyzi Farzaneh, Zarrinpashneh Saeed, Alavi Farzad: Solubility of light reservoir gasses in water by the modified Peng-Robinson plus association equation of state using experimental critical properties for pure water. Journal of Petroleum Science and Engineering 2011, 78, 109. <https://doi.org/10.1016/j.petrol.2011.05.001>
  • Liu Yuanhui, Hou Minqiang, Yang Guanying, Han Buxing: Solubility of CO2 in aqueous solutions of NaCl, KCl, CaCl2 and their mixed salts at different temperatures and pressures. The Journal of Supercritical Fluids 2011, 56, 125. <https://doi.org/10.1016/j.supflu.2010.12.003>
  • Darde Victor, van Well Willy J. M., Stenby Erling H., Thomsen Kaj: Modeling of Carbon Dioxide Absorption by Aqueous Ammonia Solutions Using the Extended UNIQUAC Model. Ind. Eng. Chem. Res. 2010, 49, 12663. <https://doi.org/10.1021/ie1009519>
  • Chapoy Antonin, Haghighi Hooman, Tohidi Bahman: Development of a Henry’s constant correlation and solubility measurements of n-pentane, i-pentane, cyclopentane, n-hexane, and toluene in water. The Journal of Chemical Thermodynamics 2008, 40, 1030. <https://doi.org/10.1016/j.jct.2008.01.019>
  • JI Yuanhui, JI Xiaoyan, FENG Xin, LIU Chang, LÜ Linghong, LU Xiaohua: Progress in the Study on the Phase Equilibria of the CO2-H2O and CO2-H2O-NaCl Systems. Chinese Journal of Chemical Engineering 2007, 15, 439. <https://doi.org/10.1016/S1004-9541(07)60105-0>
  • dos Ramos María Carolina, Blas Felipe J., Galindo Amparo: Phase Equilibria, Excess Properties, and Henry's Constants of the Water + Carbon Dioxide Binary Mixture. J. Phys. Chem. C 2007, 111, 15924. <https://doi.org/10.1021/jp073716q>
  • García Ada Villafáfila, Thomsen Kaj, Stenby Erling H.: Prediction of mineral scale formation in geothermal and oilfield operations using the Extended UNIQUAC model. Geothermics 2006, 35, 239. <https://doi.org/10.1016/j.geothermics.2006.03.001>
  • Duan Zhenhao, Sun Rui, Zhu Chen, Chou I-Ming: An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry 2006, 98, 131. <https://doi.org/10.1016/j.marchem.2005.09.001>
  • Ji Xiaoyan, Tan Sugata P., Adidharma Hertanto, Radosz Maciej: SAFT1-RPM Approximation Extended to Phase Equilibria and Densities of CO2−H2O and CO2−H2O−NaCl Systems. Ind. Eng. Chem. Res. 2005, 44, 8419. <https://doi.org/10.1021/ie050725h>
  • Valtz Alain, Chapoy Antonin, Coquelet Christophe, Paricaud Patrice, Richon Dominique: Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2K. Fluid Phase Equilibria 2004, 226, 333. <https://doi.org/10.1016/j.fluid.2004.10.013>
  • Chapoy A., Mohammadi A. H., Chareton A., Tohidi B., Richon D.: Measurement and Modeling of Gas Solubility and Literature Review of the Properties for the Carbon Dioxide−Water System. Ind. Eng. Chem. Res. 2004, 43, 1794. <https://doi.org/10.1021/ie034232t>
  • Diamond Larryn W., Akinfiev Nikolay N.: Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria 2003, 208, 265. <https://doi.org/10.1016/S0378-3812(03)00041-4>
  • Dhima Aleksandër, de Hemptinne Jean-Charles, Jose Jacques: Solubility of Hydrocarbons and CO2 Mixtures in Water under High Pressure. Ind. Eng. Chem. Res. 1999, 38, 3144. <https://doi.org/10.1021/ie980768g>
  • King M.B., Mubarak A., Kim J.D., Bott T.R.: The mutual solubilities of water with supercritical and liquid carbon dioxides. The Journal of Supercritical Fluids 1992, 5, 296. <https://doi.org/10.1016/0896-8446(92)90021-B>
  • ENICK ROBERT M., KLARA SCOTT M.: CO2 SOLUBILITY IN WATER AND BRINE UNDER RESERVOIR CONDITIONS. Chemical Engineering Communications 1990, 90, 23. <https://doi.org/10.1080/00986449008940574>
  • MATOUS J., SOBR J., NOVAK J. P., PICK J.: ChemInform Abstract: LOESLICHKEIT VON CO2 IN WASSER BEI DRUECKEN BIS ZU 40 ATM ZWISCHEN 30‐80 GRAD. Chemischer Informationsdienst. Organische Chemie 1970, 1. <https://doi.org/10.1002/chin.197011059>