Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1969, 34, 3881-3894
https://doi.org/10.1135/cccc19693881

Kinetics of mutual isomerization of trioses and their dehydration to methylglyoxal

M. Fedoroňko and J. Königstein

Crossref Cited-by Linking

  • White Jai, Terekhina Irina, Campos dos Santos Egon, Martín-Yerga Daniel, Pettersson Lars G. M., Johnsson Mats, Cornell Ann: Synergistic Bimetallic PdNi Nanoparticles: Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity. ACS Appl. Energy Mater. 2024, 7, 1802. <https://doi.org/10.1021/acsaem.3c02789>
  • Bricotte Léo, Chougrani Kamel, Alard Valérie, Ladmiral Vincent, Caillol Sylvain: Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules 2023, 28, 2724. <https://doi.org/10.3390/molecules28062724>
  • Schichtl Zebulon G., Conlin Samuel K., Mehrabi Hamed, Nielander Adam C., Coridan Robert H.: Characterizing Sustained Solar-to-Hydrogen Electrocatalysis at Low Cell Potentials Enabled by Crude Glycerol Oxidation. ACS Appl. Energy Mater. 2022, 5, 3863. <https://doi.org/10.1021/acsaem.2c00377>
  • Kalapos Miklós Péter: Evolutionary Aspects of the Oxido-Reductive Network of Methylglyoxal. J Mol Evol 2021, 89, 618. <https://doi.org/10.1007/s00239-021-10031-3>
  • Glavin Daniel P., Burton Aaron S., Elsila Jamie E., Aponte José C., Dworkin Jason P.: The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem. Rev. 2020, 120, 4660. <https://doi.org/10.1021/acs.chemrev.9b00474>
  • Grainger Megan N.C., Manley-Harris Merilyn, Lane Joseph R., Field Richard J.: Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II – Model systems. Food Chemistry 2016, 202, 492. <https://doi.org/10.1016/j.foodchem.2016.02.030>
  • Grainger Megan N.C., Manley-Harris Merilyn, Lane Joseph R., Field Richard J.: Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III – A model to simulate the conversion. Food Chemistry 2016, 202, 500. <https://doi.org/10.1016/j.foodchem.2016.02.032>
  • Grainger Megan N.C., Manley-Harris Merilyn, Fauzi Noor A.M., Farid Mohammed M.: Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof. Food Chemistry 2014, 153, 134. <https://doi.org/10.1016/j.foodchem.2013.12.017>
  • Toxvaerd Søren: The Role of Carbohydrates at the Origin of Homochirality in Biosystems. Orig Life Evol Biosph 2013, 43, 391. <https://doi.org/10.1007/s11084-013-9342-5>
  • Atrott Julia, Haberlau Steffi, Henle Thomas: Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydrate Research 2012, 361, 7. <https://doi.org/10.1016/j.carres.2012.07.025>
  • Al-Habsi Nasser A., Niranjan Keshavan: Effect of high hydrostatic pressure on antimicrobial activity and quality of Manuka honey. Food Chemistry 2012, 135, 1448. <https://doi.org/10.1016/j.foodchem.2012.06.012>
  • Delidovich I.V., Taran O.P., Simonov A.N., Matvienko L.G., Parmon V.N.: Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible “prebiotic” conditions. Advances in Space Research 2011, 48, 441. <https://doi.org/10.1016/j.asr.2011.03.032>
  • Adams Christopher J., Manley-Harris Merilyn, Molan Peter C.: The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research 2009, 344, 1050. <https://doi.org/10.1016/j.carres.2009.03.020>
  • Toxvaerd Søren: Origin of Homochirality in Biosystems. IJMS 2009, 10, 1290. <https://doi.org/10.3390/ijms10031290>
  • Paine John B., Pithawalla Yezdi B., Naworal John D.: Carbohydrate pyrolysis mechanisms from isotopic labeling. Journal of Analytical and Applied Pyrolysis 2008, 82, 42. <https://doi.org/10.1016/j.jaap.2007.12.005>
  • Toxvaerd S.: Homochirality in Bio-Organic Systems and Glyceraldehyde in the Formose Reaction. J Biol Phys 2005, 31, 599. <https://doi.org/10.1007/s10867-005-6063-7>
  • Kalapos Miklós Péter: A theoretical approach to the link between oxidoreductions and pyrite formation in the early stage of evolution. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002, 1553, 218. <https://doi.org/10.1016/S0005-2728(01)00225-0>
  • Kalapos Miklós Péter: Methylglyoxal in living organisms. Toxicology Letters 1999, 110, 145. <https://doi.org/10.1016/S0378-4274(99)00160-5>
  • Kronkvist Karin, Wallentin Katarina, Johansson Gillis: Selective enzyme amplification of NAD+/NADH using coimmobilized glycerol dehydrogenase and diaphorase with amperometric detection. Analytica Chimica Acta 1994, 290, 335. <https://doi.org/10.1016/0003-2670(94)80120-7>
  • Weber Arthur L.: Prebiotic sugar synthesis: Hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. J Mol Evol 1992, 35, 1. <https://doi.org/10.1007/BF00160255>
  • Weber Arthur L.: Origin of fatty acid synthesis: Thermodynamics and kinetics of reaction pathways. J Mol Evol 1991, 32, 93. <https://doi.org/10.1007/BF02515381>
  • Weber Arthur L.: Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution. J Mol Evol 1985, 21, 351. <https://doi.org/10.1007/BF02115654>
  • Weber Arthur L.: Prebiotic formation of ‘energy-rich’ thioesters from glyceraldehyde and N-acetylcysteine. Origins Life Evol Biosphere 1984, 15, 17. <https://doi.org/10.1007/BF01809390>
  • Weber Arthur L.: Nonenzymatic formation of “energy-rich” lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. J Mol Evol 1984, 20, 157. <https://doi.org/10.1007/BF02257376>
  • Thornalley P.J., Stern A.: The effect of glyceraldehyde on red cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1984, 804, 308. <https://doi.org/10.1016/0167-4889(84)90134-4>
  • Weber Arthur L.: Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. J Mol Evol 1983, 19, 237. <https://doi.org/10.1007/BF02099971>
  • Fedoroňko Michal, Petrušová Mária, Sticzay Tibor: Base-catalyzed β-elimination of 2,3-di-O-methyl-d-glyceraldehyde. Carbohydrate Research 1983, 115, 75. <https://doi.org/10.1016/0008-6215(83)88136-1>
  • Fedoroňko Michal, Petrušová Mária, Tvaroška Igor: Acid-catalyzed hydrolysis of 2-methoxypropenal. Carbohydrate Research 1983, 115, 85. <https://doi.org/10.1016/0008-6215(83)88137-3>
  • Lundbäck Hans, Johansson Gillis, Holst Olle: Determination of hydrogen peroxide for application in aerobic cell systems oxygenated via hydrogen peroxide. Analytica Chimica Acta 1983, 155, 47. <https://doi.org/10.1016/S0003-2670(00)85578-6>
  • Baltes Herbert, Leupold Ernst Ingo: 2‐Oxopropanal (Methylglyoxal) aus Glycerin durch Oxidation in der Gasphase. Angewandte Chemie 1982, 94, 544. <https://doi.org/10.1002/ange.19820940714>
  • Baltes Herbert, Leupold Ernst Ingo: 2‐Oxopropanal (Methylglyoxal) by Oxidation of Glycerin in the Gas Phase. Angew. Chem. Int. Ed. Engl. 1982, 21, 540. <https://doi.org/10.1002/anie.198205401>
  • Weber Arthur L.: Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. J Mol Evol 1982, 18, 354. <https://doi.org/10.1007/BF01733903>
  • Fedoroňko Michal, Temkovic Peter, Königstein Josef, Kováčik Vladimir, Tvaroška Igor: Study of the kinetics and mechanism of the acid-base-catalyzed enolization of hydroxyacetaldehyde and methoxyacetaldehyde. Carbohydrate Research 1980, 87, 35. <https://doi.org/10.1016/S0008-6215(00)85189-7>
  • Fedoroňko Michal, Temkovic Peter, Mihálov Vincent, Tvaroška Igor: Kinetics and mechanism of the acid-catalyzed reactions of methylated trioses. Carbohydrate Research 1980, 87, 51. <https://doi.org/10.1016/S0008-6215(00)85190-3>
  • Lookhart George L., Feather Milton S.: Acid-catalyzed isomerization and dehydration of dl-glyceraldehyde and 1,3-dihydroxy-2-propanone. Carbohydrate Research 1978, 60, 259. <https://doi.org/10.1016/S0008-6215(78)80033-0>
  • Glotova Yu. K., Irzhak V. I.: Mechanism of the reaction of cocondensation of glyceraldehyde with formaldehyde. Russ Chem Bull 1974, 23, 1209. <https://doi.org/10.1007/BF00923080>
  • Linek K., Fedoron̆ko M., Isbell H.S.: The interconversion of the D-tetroses in pyridine. Carbohydrate Research 1972, 21, 326. <https://doi.org/10.1016/S0008-6215(00)82163-1>
  • FEDORONKO M., KOENIGSTEIN J.: ChemInform Abstract: KINETIK DER WECHSELSEITIGEN ISOMERISIERUNG VON TRIOSEN UND IHRE DEHYDRATISIERUNG ZU METHYLGLYOXAL. Chemischer Informationsdienst. Organische Chemie 1970, 1. <https://doi.org/10.1002/chin.197011106>