Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1966, 31, 65-89
https://doi.org/10.1135/cccc19660065

Studies on the inductive effect. V. Separation of inductive and mesomeric effects in meta and para benzene derivatives

O. Exner

Crossref Cited-by Linking

  • Stasyuk Anton J., Bultinck Patrick, Gryko Daniel T., Cyrański Michał K.: The effect of hydrogen bond strength on emission properties in 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridines. Journal of Photochemistry and Photobiology A: Chemistry 2016, 314, 198. <https://doi.org/10.1016/j.jphotochem.2015.08.013>
  • Mohajeri Afshan, Shahamirian Mozhgan: Substituent effect on local aromaticity in mono and di‐substituted heterocyclic analogs of naphthalene. J of Physical Organic Chem 2010, 23, 440. <https://doi.org/10.1002/poc.1619>
  • Mohajeri Afshan, Shahamirian Mozhgan: The role of substituent on the aromaticity variation of mono- and di-substituted aza analogs of indole. Journal of Molecular Structure: THEOCHEM 2010, 951, 72. <https://doi.org/10.1016/j.theochem.2010.04.010>
  • Dumont Elise, Chaquin Patrick: Inductive Effects on Proton Affinity of Benzene Derivatives: Analysis Using Fictitious Hydrogen Atoms. J. Phys. Chem. A 2009, 113, 2990. <https://doi.org/10.1021/jp806871r>
  • Vasilyev Aleksander V., Shchukin Andrey O., Walspurger Stéphane, Sommer Jean: Protonation of Diarylacetylenes in Superacid HSO3F and Their Oxidation in the HSO3F/PbO2 System: One‐Pot Synthesis of Polysubstituted Naphthalenes. Eur J Org Chem 2008, 2008, 4632. <https://doi.org/10.1002/ejoc.200800548>
  • Vasil’ev A. V., Aristov S. A., Fukin G. K., Kozhanov K. A., Bubnov M. P., Cherkasov V. K.: Oxidation of aromatic compounds: XVI. Radical cations derived from acetylenic compounds with electron-withdrawing groups: Reactions and ESR parameters. Russ J Org Chem 2008, 44, 791. <https://doi.org/10.1134/S1070428008060031>
  • Krygowski Tadeusz M., Palusiak Marcin, Płonka Anna, Zachara‐Horeglad Joanna E.: Relationship between substituent effect and aromaticity – Part III: naphthalene as a transmitting moiety for substituent effect. J of Physical Organic Chem 2007, 20, 297. <https://doi.org/10.1002/poc.1127>
  • Exner Otto, Böhm Stanislav: Revision of the dual substituent parameter treatment using the DFT‐calculated reaction energies. J of Physical Organic Chem 2007, 20, 454. <https://doi.org/10.1002/poc.1177>
  • Del Bene Janet E., Elguero José, Alkorta Ibon, Yáñez Manuel, Mó Otilia: Spin−Spin Coupling Constants for Iminoboranes RBNH, HBNR, and RBNR and Comparisons with Corresponding Isoelectronic Acetylenes RCCH and RCCR, for R = H, CH3, NH2, OH, and F. J. Chem. Theory Comput. 2007, 3, 549. <https://doi.org/10.1021/ct600351p>
  • Böhm Stanislav, Exner Otto: Revision of the Dual-Substituent-Parameter Treatment; Reaction Series with a Donor Reaction Centre. Collect. Czech. Chem. Commun. 2007, 72, 1158. <https://doi.org/10.1135/cccc20071158>
  • Exner Otto, Böhm Stanislav: Conjugation of two functional groups through an unsaturated system. J of Physical Organic Chem 2006, 19, 1. <https://doi.org/10.1002/poc.998>
  • Grabowski Slawomir J., Sokalski W. Andrzej: Different types of hydrogen bonds: correlation analysis of interaction energy components. J of Physical Organic Chem 2005, 18, 779. <https://doi.org/10.1002/poc.937>
  • Böhm Stanislav, Exner Otto: Quantitative evaluation of resonance interaction: monosubstituted 1,3-butadienes. Journal of Molecular Structure: THEOCHEM 2005, 722, 125. <https://doi.org/10.1016/j.theochem.2004.11.053>
  • Zakrzewska Anna, Gawinecki Ryszard, Kolehmainen Erkki, Ośmiałowski Borys: 13C-NMR Based Evaluation of the Electronic and Steric Interactions in Aromatic Amines. IJMS 2005, 6, 52. <https://doi.org/10.3390/i6010052>
  • Böhm Stanislav, Exner Otto: Interaction of two groups in a molecule through a double bond: concept of the π-inductive effect. Journal of Molecular Structure: THEOCHEM 2004, 682, 171. <https://doi.org/10.1016/j.theochem.2004.04.059>
  • Krygowski Tadeusz M., Ejsmont Krzysztof, Stepień Beata T., Cyrański Michał K., Poater Jordi, Solà Miquel: Relation between the Substituent Effect and Aromaticity. J. Org. Chem. 2004, 69, 6634. <https://doi.org/10.1021/jo0492113>
  • Exner Otto, Böhm Stanislav: Validity of the Hammett equation for isolated molecules: basicity of 3- and 4-substituted benzonitriles. Phys. Chem. Chem. Phys. 2004, 6, 3864. <https://doi.org/10.1039/B404556D>
  • Pícha Jan, Cibulka Radek, Liška František, Pařík Patrik, Pytela Oldřich: Reparametrization and/or Determination of Hammett, Inductive, Mesomeric and AISE Substituent Constants for Five Substituents: N+(CH3)3, CH2N+(CH3)3, CH2Py+, CH2SO2CH3 and PO(OCH3)2. Collect. Czech. Chem. Commun. 2004, 69, 2239. <https://doi.org/10.1135/cccc20042239>
  • Böhm Stanislav, Exner Otto: π-Electron densities and resonance effects in benzene monoderivatives. Journal of Molecular Structure: THEOCHEM 2002, 578, 103. <https://doi.org/10.1016/S0166-1280(01)00693-5>
  • Palát Karel, Waisser Karel, Exner Otto: Infrared intensities of benzene derivatives as a measure of the substituent resonance effect. J of Physical Organic Chem 2001, 14, 677. <https://doi.org/10.1002/poc.416>
  • Stȩpień Beata T, Cyrański Michał K, Krygowski Tadeusz M: Aromaticity strongly affected by substituents in fulvene and heptafulvene as a new method of estimating the resonance effect. Chemical Physics Letters 2001, 350, 537. <https://doi.org/10.1016/S0009-2614(01)01320-3>
  • Exner Otto, Böhm Stanislav: Resonance Energy in Benzene Derivatives with a Variable Functional Group. Collect. Czech. Chem. Commun. 2001, 66, 1623. <https://doi.org/10.1135/cccc20011623>
  • Sullivan Jonathan J., Jones A. Daniel, Tanji Kenneth K.: QSAR Treatment of Electronic Substituent Effects Using Frontier Orbital Theory and Topological Parameters. J. Chem. Inf. Comput. Sci. 2000, 40, 1113. <https://doi.org/10.1021/ci990222k>
  • Gawinecki Ryszard, Kolehmainen Erkki, Zakrzewski Andrzej, Laihia Katri, Ośmiałowski Borys, Kauppinen Reijo: Predominance of inductive over resonance substituent effect on33S NMR chemical shifts of 4-substituted phenyl-4′-methylphenacyl sulfones. Magn. Reson. Chem. 1999, 37, 437. <https://doi.org/10.1002/(SICI)1097-458X(199906)37:6<437::AID-MRC470>3.0.CO;2-3>
  • Exner Otto: The inductive effect: theory and quantitative assessment. J. Phys. Org. Chem. 1999, 12, 265. <https://doi.org/10.1002/(SICI)1099-1395(199904)12:4<265::AID-POC124>3.0.CO;2-O>
  • Romanenko E. A.: The chlorotropic isomerization mechanism for amidinium tetrachlorophosphorates. Theor Exp Chem 1999, 35, 146. <https://doi.org/10.1007/BF02513032>
  • Romanenko E. A.: Peculiarities of the mechanism of chlorotropic and conformational isomerism in a series of chloromethyl isocyanates. Theor Exp Chem 1998, 34, 148. <https://doi.org/10.1007/BF02764459>
  • Laerdahl Jon K., Fægri Knut, Rømming Christian, Swang Ole, Midtgård Tonje, Schöffel Klaus: Substituent crowding in nitrobenzenes. Journal of Molecular Structure 1998, 445, 89. <https://doi.org/10.1016/S0022-2860(97)00415-8>
  • Jiménez Pilar, Roux Maria Victoria, Kulhánek JiŘi, Exner Otto: Enthalpies of formation of methoxybenzoic acids and their dependence on structure. Struct Chem 1996, 7, 375. <https://doi.org/10.1007/BF02275164>
  • Reis JoãO Carlos R., Segurado Manuel A. P., De Oliveira Jaime D. Gomes: Hyperbolic Model for the meta–para interrelationship in benzene derivatives. J of Physical Organic Chem 1995, 8, 5. <https://doi.org/10.1002/poc.610080104>
  • Reis João Carlos R., Segurado Manuel A. P., De Oliveira Jaime D. Gomes: Plurilinear improvement of the Hammett equation. J of Physical Organic Chem 1995, 8, 671. <https://doi.org/10.1002/poc.610081006>
  • Eriksson Lennart, Verhaar Henk J. M., Hermens Joop L. M.: Multivariate characterization and modeling of the chemical reactivity of epoxides. Enviro Toxic and Chemistry 1994, 13, 683. <https://doi.org/10.1002/etc.5620130502>
  • Decouzon Michèle, Exner Otto, Gal Jean‐Francois, Maria Pierre‐Charles: The meta versus para substituent effect in the gas phase: Separation of inductive and resonance components. J of Physical Organic Chem 1994, 7, 615. <https://doi.org/10.1002/poc.610071105>
  • Brzyska W., Karasinski S.: Thermal decomposition of thorium(IV) complexes with benzenecarboxylic acids in air atmosphere. Journal of Thermal Analysis 1994, 42, 981. <https://doi.org/10.1007/BF02547120>
  • Exner Otto, Dahn Hans, Péchy Péter: Correlation of oxygen‐17 substituent‐induced chemical shifts: Meta‐ and para‐substituted methyl benzoates. Magnetic Reson in Chemistry 1992, 30, 381. <https://doi.org/10.1002/mrc.1260300505>
  • Boese Roland, Bl�ser Dieter, Nussbaumer Michael, Krygowski Tadeusz Marek: Low temperature crystal and molecular structure of nitrobenzene. Struct Chem 1992, 3, 363. <https://doi.org/10.1007/BF00678559>
  • Shklyaev V. S., Pantsurkin V. I., Ryazanov V. N., Gorbunova V. V., Sukhanov A. A., Vakhrina N. I., Moroz A. P., Ivanova A. P.: Relationship of structure to acute toxicity and antiarrhythmic activity in alkylamino- and dialkylaminoacet-ortho-toluidides. Pharm Chem J 1992, 26, 338. <https://doi.org/10.1007/BF00773166>
  • Hrabák František, Bezděk Milan: The influence of the H‐bonded association of COOH groups on the copolymerization of unsaturated carboxylic acids. Makromol. Chem. 1991, 192, 1419. <https://doi.org/10.1002/macp.1991.021920618>
  • Krygowski T. M., Kalinowski M. K., Turowska-Tyrk I., Hiberty P. C., Milart P., Silvestro A., Topsom R. D., Daehne S.: Crystallographic studies of intra- and intermolecular interactions. Part 4. A comparative study of the effect of through-resonance on the geometry of p-nitro- and p-nitrosophenolate anions. Struct Chem 1991, 2, 71. <https://doi.org/10.1007/BF00673492>
  • Shklyaev V. S., Pantsurkin V. I., Ryazanov V. N., Gorbunova V. V., Sukhanov A. A., Moroz A. P., Ivanova A. P.: Synthesis, acute toxicity and antiarrhythmic and surface activities of arylamides of diethylaminoacetic acid. Pharm Chem J 1991, 25, 629. <https://doi.org/10.1007/BF00777685>
  • Krawiec Mariusz, Marek Krygowski Tadeusz: Crystallographic studies of intra- and inter-molecular interactions Part III. Refinement of the crystal and molecular structure of N,N-dimethyl-m-nitroaniline: additivity of substituent effects on geometrical parameters of the ring. Journal of Molecular Structure 1991, 246, 113. <https://doi.org/10.1016/0022-2860(91)80018-Y>
  • Exner Otto, Buděšínský Miloš: Correlation of carbon‐13 substituent‐induced chemical shifts revisited: Meta‐ and para‐substituted benzonitriles. Magnetic Reson in Chemistry 1989, 27, 27. <https://doi.org/10.1002/mrc.1260270106>
  • Buděšńský Miloš, Exner Otto: Correlation of carbon‐13 substituent‐induced chemical shifts: Meta‐ and para‐substituted methyl benzoates. Magnetic Reson in Chemistry 1989, 27, 585. <https://doi.org/10.1002/mrc.1260270612>
  • Katritzky Alan R., Gallos John K., Durst H. Dupont: Structure of and electronic interactions in aromatic polyvalent iodine compounds: A 13C NMR study. Magnetic Reson in Chemistry 1989, 27, 815. <https://doi.org/10.1002/mrc.1260270902>
  • Shkurko O. P., Mamaev V. P.: Additive character of the resonance constants of azinyl groups. Chem Heterocycl Compd 1989, 25, 296. <https://doi.org/10.1007/BF00472389>
  • Politzer Peter, Sukumar Nagamani: An examination of some effects of OH rotation in phenol and p-nitrophenol. Journal of Molecular Structure: THEOCHEM 1988, 179, 439. <https://doi.org/10.1016/0166-1280(88)80140-4>
  • Nogaj Boleslaw, Pruszyński Przemyslaw: Influence of the 1,1,3,3‐tetramethylguanidinyl substituent on the charge distribution in chlorobenzenes, studied by 35Cl NQR. Magnetic Reson in Chemistry 1987, 25, 301. <https://doi.org/10.1002/mrc.1260250405>
  • Kahn S.D, Keck G.E, Hehre W.J: The Effect of Protecting Groups on Chelation Control. Tetrahedron Letters 1987, 28, 279. <https://doi.org/10.1016/S0040-4039(00)95706-X>
  • Egorochkin A N, Razuvaev G A: The σ Constants of Substituents Containing Silicon Subgroup Elements. Russ. Chem. Rev. 1987, 56, 846. <https://doi.org/10.1070/RC1987v056n09ABEH003309>
  • Tate John V., Tinnerman William N., Jurevics Vito, Jeskey Harold, Biehl Edward R.: Preparation of 5‐substituted benzylbarburituric acids and investigation of the effect of the benzyl and substituted benzyl groups on the acidity of barbituric acid. Journal of Heterocyclic Chem 1986, 23, 9. <https://doi.org/10.1002/jhet.5570230103>
  • Romanenko E. A., Kal'chenko V. I., Rudyi R. B.: Nuclear quadrupole resonance of amidinium tetrachlorophosphorates. Theor Exp Chem 1986, 21, 691. <https://doi.org/10.1007/BF00945149>
  • Meyerson Matthew L.: A quantitative model for carbonyl infrared frequencies of substituted quinones. Spectrochimica Acta Part A: Molecular Spectroscopy 1985, 41, 1263. <https://doi.org/10.1016/0584-8539(85)80233-6>
  • Brunvoll Jon, Exner Otto, Hargittai István, Kolonits Mária, Scharfenberg Peter: The molecular structure of phenylmethylsulfone. Journal of Molecular Structure 1984, 117, 317. <https://doi.org/10.1016/0022-2860(84)85148-0>
  • Raban Morton, Kost Daniel: Stereolabile configurational units torsional and inversional stereochemistry in sulfenamides and hydroxylamines. Tetrahedron 1984, 40, 3345. <https://doi.org/10.1016/S0040-4020(01)91484-X>
  • Tsuno Yuho, Fujio Mizue, Sawada Masami, Yukawa Yasuhide: Concerning the optimum scaling of the inductive substituent constants in substituted benzene reactivities. Aspects from the analysis of quinuclidine basicities. Tetrahedron Letters 1982, 23, 213. <https://doi.org/10.1016/S0040-4039(00)86788-X>
  • Shklyaev V. S., Pantsurkin V. I., Vakhrina N. I., Vakhrin M. I.: IR and PMR spectra and ionization constants of anesthetics in a series of substituted analides of diethylaminoacetic acid. Pharm Chem J 1980, 14, 239. <https://doi.org/10.1007/BF00777456>
  • Walter Wolfgang, Bauer Otto Heinrich: Über die Struktur der Thioamide und ihrer Derivate, XLI Zum Einfluß von Konfiguration und Konformation auf die Oxidierbarkeit von substituierten N‐(Methyl)thiobenzaniliden. Liebigs Ann. Chem. 1979, 1979, 248. <https://doi.org/10.1002/jlac.197919790212>
  • Könnecke Andreas, Dörre Ronald, Kleinpeter Erich, Lippmann Eberhard: Substituenteneffekte auf azido-tetrazolo-gleichgewichte elektronische und sterische effekte bei s-triazolo[4,3-c]tetrazolo[1,5-a]pyrimidinen. Tetrahedron 1979, 35, 1957. <https://doi.org/10.1016/0040-4020(79)85054-1>
  • Tsuno Yuho, Sawada Masami, Fujii Takahiro, Yukawa Yasuhide: The Substituent Effect. 14. The Solvolysis of 6- and 7-Substituted 1-(2-NaphthyI)ethyl Chlorides. Bulletin of the Chemical Society of Japan 1979, 52, 3033. <https://doi.org/10.1246/bcsj.52.3033>
  • Pies Wolfgang, Weiss Alarich: Zum Substituenteneinfluß der Guanidino‐ und der Guanidiniumgruppe, Teil II: 35Cl‐NQR‐Messungen an N‐(Chlorphenyl)guanidinen, ClxC6H5−xNHC( NH)NH2, und N‐(Chlorphenyl)guanidinium‐nitraten und ‐bromiden, [ClxC6H5−xNHC(NH2)2]⊕X⊖ mit X− = NO, Br⊖. Chem. Ber. 1978, 111, 335. <https://doi.org/10.1002/cber.19781110132>
  • Besso Hiromichi, Imafuku Kimiaki, Matsumura Hisashi: Substituent Effects on Tautomerism of 4-Pyridinethiones. Bulletin of the Chemical Society of Japan 1977, 50, 3295. <https://doi.org/10.1246/bcsj.50.3295>
  • Besso Hiromichi, Imafuku Kimiaki, Matsumura Hisashi: Tautomerism of 4-Pyridones. Bulletin of the Chemical Society of Japan 1977, 50, 710. <https://doi.org/10.1246/bcsj.50.710>
  • Egorov Yu. P., Nuzhdina Yu. A., Skuba I. Yu., Markovskii L. N.: IR spectroscopic investigation of the electronic interactions in N-substituted iminosulfonyl chlorides and N-substituted iminothionyl chlorides. Theor Exp Chem 1975, 9, 251. <https://doi.org/10.1007/BF00526149>
  • Weiner Michael A., Lattman Michael: Ultraviolet photoelectron spectra of 4-substituted pyridine-boranes. Inorganic and Nuclear Chemistry Letters 1975, 11, 723. <https://doi.org/10.1016/0020-1650(75)80192-9>
  • Khranovskii V. A., Egorov Yu. P.: Vibrational spectra and structure of ?,?-diphenylperfluoropolyenes. J Struct Chem 1973, 13, 991. <https://doi.org/10.1007/BF00746909>
  • Berthelot M., Laurence C., Wojtkowiak B.: Effets de substituant sur la fréquence hydroxyle de phenols associés à des hydrocarbures benzéniques par liaison d'hydrogene. Journal of Molecular Structure 1973, 18, 435. <https://doi.org/10.1016/0022-2860(73)85094-X>
  • De Bruyne C.K., Wouters-Leysen J., Yde M.: The acid hydrolysis of phenyl β-D-galactopyranosides. Carbohydrate Research 1973, 29, 387. <https://doi.org/10.1016/S0008-6215(00)83024-4>
  • de Bruyne C.K., van der Groen G.: The acid hydrolysis of alkyl β-D-galactopyranosides. Carbohydrate Research 1972, 25, 59. <https://doi.org/10.1016/S0008-6215(00)82746-9>
  • Exner Otto, Všetečka Václav: The concept of mesomeric dipole moments. Tetrahedron Letters 1972, 13, 4613. <https://doi.org/10.1016/S0040-4039(01)94379-5>
  • Reichardt Christian, Halbritter Klaus: Synthesen mit substituierten Malondialdehyden, X. γ‐Fluor‐pentamethincyanin‐Farbstoffe. Chem. Ber. 1971, 104, 822. <https://doi.org/10.1002/cber.19711040319>
  • Komanová E., Koman V., Malinová A.: The gas chromatography of isothiocyanates and 3-substituted rhodanines. Journal of Chromatography A 1971, 62, 132. <https://doi.org/10.1016/S0021-9673(01)96819-0>
  • Schiemenz G.P.: Zum elektronischen effekt von X—CH2-gruppen. Tetrahedron 1971, 27, 5723. <https://doi.org/10.1016/S0040-4020(01)91737-5>
  • Katritzky A. R., Topsom R. D.: Verzerrungen des π‐Elektronensystems in substituierten Benzolen. Angewandte Chemie 1970, 82, 106. <https://doi.org/10.1002/ange.19700820303>
  • Katritzky A. R., Topsom R. D.: Distortions of the π‐Electron System in Substituted Benzenes. Angew. Chem. Int. Ed. Engl. 1970, 9, 87. <https://doi.org/10.1002/anie.197000871>
  • Fabian J., Scheithauer St., Mayer R.: MO‐LCAO‐Berechnungen an schwefelhaltigen π‐Systemen, 8. UV‐S‐Absorptionen von Aryldithiocarbonsäureestern. J. Prakt. Chem. 1969, 311, 45. <https://doi.org/10.1002/prac.19693110108>
  • van Wijnendaele F., De Bruyne C.K.: The acid hydrolysis of phenyl β-d-xylopyranosides. Carbohydrate Research 1969, 9, 277. <https://doi.org/10.1016/S0008-6215(00)80165-2>
  • Moniz William B., Lustig Ernest, Hansen Elizabeth A.: Application of Low-Field NMR to the Unambiguous Assignment of Spin-Coupling Parameters. III. Other Pentafluorobenzenes. The Journal of Chemical Physics 1969, 51, 4666. <https://doi.org/10.1063/1.1671839>
  • Schiemenz G. P.: Hammett‐Konstanten phosphorhaltiger Gruppen aus Kernresonanzspektren meta‐ und ortho‐phosphor‐substituierter Toluole. Angewandte Chemie 1968, 80, 559. <https://doi.org/10.1002/ange.19680801406>
  • Schiemenz G. P.: Hammett Constants of Phosphorus‐containing Groups Determined from Nuclear Magnetic Resonance Spectra of meta‐ and ortho‐Phosphorus‐substituted Toluenes. Angew. Chem. Int. Ed. Engl. 1968, 7, 545. <https://doi.org/10.1002/anie.196805451>
  • Kuthan Josef, Skála Vratislav: Zur HMO‐Interpretation der Hammettschen Gleichung. Zeitschrift fuer Chemie 1968, 8, 340. <https://doi.org/10.1002/zfch.19680080915>
  • Fabian J., Viola H., Mayer R.: Quantitative beschreibung der UV-S-absorptionen einfacher thiocarbonylverbindungen. Tetrahedron 1967, 23, 4323. <https://doi.org/10.1016/S0040-4020(01)88831-1>
  • Exner O., Boček K.: Correlation of infra-red frequencies and intensities with reactivity data. Tetrahedron Letters 1967, 8, 1433. <https://doi.org/10.1016/S0040-4039(00)90976-6>