Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1965, 30, 2900-2907
https://doi.org/10.1135/cccc19652900

Beitrag zur Theorie der Chromatographie II. Einfluss der Diffusion ausserhalb und der Adsorption innerhalb des Sorbens-korns

M. Kubín

Crossref Cited-by Linking

  • Miyabe Kanji, Sakai Mio, Inaba Shunta: Moment analysis method for the determination of permeation kinetics of coumarin at lipid bilayers of liposomes by using capillary electrophoresis. Electrophoresis 2024, 45, 1885. <https://doi.org/10.1002/elps.202400100>
  • Miyabe Kanji, Ito Yuma: Moment analysis method for determination of rate constants of solute permeation across interface of spherical molecular aggregates by means of high-performance liquid chromatography. Journal of Chromatography A 2024, 1730, 465160. <https://doi.org/10.1016/j.chroma.2024.465160>
  • Miyabe Kanji, Ishitobi Amane, Hiyama Kanoko, Kubotani Fuzuki: Moment Analysis Method for Measurement of Reaction Equilibrium and Rate Constants by Using High-Performance Liquid Chromatography. Anal. Chem. 2024, 96, 4553. <https://doi.org/10.1021/acs.analchem.3c05387>
  • Miyabe Kanji, Umeda Momoko, Inaba Shunta, Senoo Shiori: Analysis of Mass Transfer Kinetics at Lipid Bilayer Membranes of Liposome by Means of Electrokinetic Chromatography and Moment Theory. Ind. Eng. Chem. Res. 2024, 63, 2822. <https://doi.org/10.1021/acs.iecr.3c03848>
  • Miyabe Kanji, Ito Yuma: Moment Analysis of Solute Permeation Kinetics at the Interface of Spherical Molecular Aggregates by Using Partial Supplying High- Performance Liquid Chromatography. Ind. Eng. Chem. Res. 2024. <https://doi.org/10.1021/acs.iecr.4c03661>
  • Miyabe Kanji, Oya Mio, Imaizumi Moeko: Moment analysis by affinity capillary electrophoresis for study of reaction kinetics between phenylboronic acid and monoccharides. Bulletin of the Chemical Society of Japan 2024, 97. <https://doi.org/10.1093/bulcsj/uoae104>
  • Liu Chuncheng, Uslamin Evgeny A., Pidko Evgeny A., Kapteijn Freek: Direct discerning reaction pathways in methanol-to-hydrocarbons by transient operation – FASPA. Chemical Engineering Journal 2023, 453, 139696. <https://doi.org/10.1016/j.cej.2022.139696>
  • Du Jinliang, Li Jie, Feng Yunli, Li Ying, Zhang Fucheng: Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design. International Journal of Plasticity 2023, 164, 103587. <https://doi.org/10.1016/j.ijplas.2023.103587>
  • Miyabe Kanji: Moment equations for partial filling capillary electrophoresis. Electrophoresis 2022, 43, 559. <https://doi.org/10.1002/elps.202100293>
  • Miyabe Kanji: Moment theory of affinity capillary electrophoresis for analysis of reaction kinetics of intermolecular interactions. Journal of Chromatography A 2022, 1684, 463557. <https://doi.org/10.1016/j.chroma.2022.463557>
  • Miyabe Kanji, Aoki Kayoko: Moment Analysis of Solute Permeation Kinetics at an Interface of Mixed Micelles of Anionic and Nonionic Surfactants. Bulletin of the Chemical Society of Japan 2022, 95, 1715. <https://doi.org/10.1246/bcsj.20220251>
  • Ur Rehman, Muneer Adeel, Qamar Shamsul: Analysis of equilibrium dispersive model of liquid chromatography considering a quadratic-type adsorption isotherm. Therm sci 2022, 26, 2069. <https://doi.org/10.2298/TSCI201229179U>
  • Miyabe Kanji, Nakajima Mari: Kinetic study on solute permeation at the interface of molecular aggregates by partial filling capillary electrophoresis. Electrophoresis 2021, 42, 2528. <https://doi.org/10.1002/elps.202100252>
  • Miyabe Kanji, Arai Ayaka, Ishizuka Mana: Moment Theory of Chromatography for the Analysis of Reaction Kinetics of Intermolecular Interactions. Anal. Chem. 2021, 93, 10365. <https://doi.org/10.1021/acs.analchem.1c02111>
  • Miyabe Kanji: Moment Equations for Kinetic Study of Intermolecular Interaction by Size Exclusion Chromatography. Bulletin of the Chemical Society of Japan 2021, 94, 755. <https://doi.org/10.1246/bcsj.20200315>
  • Miyabe Kanji: Simplification of Moment Analysis Procedure for Kinetic Study of Chromatographic Behavior of Core-shell Particles. ANAL. SCI. 2021, 37, 1553. <https://doi.org/10.2116/analsci.21P094>
  • Miyabe Kanji: Moment analysis of peak broadening in affinity capillary electrophoresis and electrokinetic chromatography. Journal of Chromatography A 2020, 1609, 460451. <https://doi.org/10.1016/j.chroma.2019.460451>
  • Miyabe Kanji, Senoo Shiori, Okayasu Nanami: Moment theory for the analytical determination of rate constants for solute permeation at the interface of spherical molecular aggregates. Electrophoresis 2019, 40, 2962. <https://doi.org/10.1002/elps.201900182>
  • Qamar Shamsul, Bashir Seemab, Perveen Sadia, Seidel-Morgenstern Andreas: Relations between kinetic parameters of different column models for liquid chromatography applying core-shell particles. Journal of Liquid Chromatography & Related Technologies 2019, 42, 16. <https://doi.org/10.1080/10826076.2019.1570522>
  • Miyabe Kanji: Moment analysis for reaction kinetics of intermolecular interactions. Electrophoresis 2018, 39, 3032. <https://doi.org/10.1002/elps.201800218>
  • David Uche Ugochukwu, Qamar Shamsul, Seidel-Morgenstern Andreas: Analytical and numerical solutions of two-dimensional general rate models for liquid chromatographic columns packed with core–shell particles. Chemical Engineering Research and Design 2018, 130, 295. <https://doi.org/10.1016/j.cherd.2017.12.044>
  • Miyabe Kanji: Moment analysis for mass transfer kinetics at the interface of spherical molecular aggregates. Journal of Chromatography A 2018, 1572, 172. <https://doi.org/10.1016/j.chroma.2018.08.036>
  • Qamar Shamsul, Kiran Nadia, Anwar Talha, Bibi Sameena, Seidel-Morgenstern Andreas: Theoretical Investigation of Thermal Effects in an Adiabatic Chromatographic Column Using a Lumped Kinetic Model Incorporating Heat Transfer Resistances. Ind. Eng. Chem. Res. 2018, 57, 2287. <https://doi.org/10.1021/acs.iecr.7b04555>
  • Rehman Jamil Ur, Muneer Adeel, Abbasi Javeria N., Qamar Shamsul, Seidel-Morgenstern Andreas: Study of Thermal Effects in Two-Component Nonisothermal Liquid Chromatography Considering Thermally Insulated Columns. Ind. Eng. Chem. Res. 2018, 57, 15084. <https://doi.org/10.1021/acs.iecr.8b02990>
  • Miyabe Kanji, Suzuki Nozomu: Moment Analysis of Mass Transfer Kinetics in Micellar Electrokinetic Chromatography Systems. ANAL. SCI. 2018, 34, 215. <https://doi.org/10.2116/analsci.34.215>
  • Qamar Shamsul, Sattar Fouzia Abdul, Batool Iqra, Seidel-Morgenstern Andreas: Theoretical analysis of the influence of forced and inherent temperature fluctuations in an adiabatic chromatographic column. Chemical Engineering Science 2017, 161, 249. <https://doi.org/10.1016/j.ces.2016.12.027>
  • Qamar Shamsul, Uche David U., Khan Farman U., Seidel-Morgenstern Andreas: Analysis of linear two-dimensional general rate model for chromatographic columns of cylindrical geometry. Journal of Chromatography A 2017, 1496, 92. <https://doi.org/10.1016/j.chroma.2017.03.048>
  • Khan Farman U., Qamar Shamsul: Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis. Journal of Chromatographic Science 2017, 55, 536. <https://doi.org/10.1093/chromsci/bmx007>
  • Miyabe Kanji, Suzuki Nozomu: Moment Analysis Theory for Size Exclusion Capillary Electrochromatography with Chemical Reaction of Intermolecular Interaction. ANAL. SCI. 2017, 33, 1147. <https://doi.org/10.2116/analsci.33.1147>
  • Qamar Shamsul, Akram Noreen, Seidel-Morgenstern Andreas: Analysis of general rate model of linear chromatography considering finite rates of the adsorption and desorption steps. Chemical Engineering Research and Design 2016, 111, 13. <https://doi.org/10.1016/j.cherd.2016.04.006>
  • Miyabe Kanji: Moment theory for kinetic study of chromatography. TrAC Trends in Analytical Chemistry 2016, 81, 79. <https://doi.org/10.1016/j.trac.2016.01.003>
  • Qamar Shamsul, Seidel-Morgenstern Andreas: Extending the potential of moment analysis in chromatography. TrAC Trends in Analytical Chemistry 2016, 81, 87. <https://doi.org/10.1016/j.trac.2016.01.007>
  • Qamar Shamsul, Perveen Sadia, Seidel-Morgenstern Andreas: Analysis of a Two-Dimensional Nonequilibrium Model of Linear Reactive Chromatography Considering Irreversible and Reversible Reactions. Ind. Eng. Chem. Res. 2016, 55, 2471. <https://doi.org/10.1021/acs.iecr.5b04714>
  • Miyabe Kanji, Suzuki Nozomu: Moment Analysis Theory for Kinetic Study of Intermolecular Interaction by Affinity Capillary Electrophoresis. Bulletin of the Chemical Society of Japan 2016, 89, 746. <https://doi.org/10.1246/bcsj.20160068>
  • Parveen Sadia, Qamar Shamsul, Seidel-Morgenstern Andreas: Two-dimensional non-equilibrium model of liquid chromatography: Analytical solutions and moment analysis. Chemical Engineering Science 2015, 122, 64. <https://doi.org/10.1016/j.ces.2014.09.018>
  • Qamar Shamsul, Abbasi Javeria Nawaz, Mehwish Aqsa, Seidel-Morgenstern Andreas: Linear general rate model of chromatography for core–shell particles: Analytical solutions and moment analysis. Chemical Engineering Science 2015, 137, 352. <https://doi.org/10.1016/j.ces.2015.06.053>
  • Miyabe Kanji, Shimazaki Youki: Moment Analysis of Affinity Kinetics in Inclusion Complex System between Thymol and Sulfated-β-cyclodextrin by Chromatographic Capillary Electrophoresis (CCE). Bulletin of the Chemical Society of Japan 2015, 88, 1603. <https://doi.org/10.1246/bcsj.20150203>
  • Qamar Shamsul, Nawaz Abbasi Javeria, Javeed Shumaila, Seidel-Morgenstern Andreas: Analytical solutions and moment analysis of general rate model for linear liquid chromatography. Chemical Engineering Science 2014, 107, 192. <https://doi.org/10.1016/j.ces.2013.12.019>
  • Qamar Shamsul, Khan Farman U., Mehmood Yasir, Seidel-Morgenstern Andreas: Analytical solution of a two-dimensional model of liquid chromatography including moment analysis. Chemical Engineering Science 2014, 116, 576. <https://doi.org/10.1016/j.ces.2014.05.043>
  • Miyabe Kanji: Moment equations for chromatography based on Langmuir type reaction kinetics. Journal of Chromatography A 2014, 1356, 171. <https://doi.org/10.1016/j.chroma.2014.06.052>
  • Javeed Shumaila, Qamar Shamsul, Ashraf Waqas, Warnecke Gerald, Seidel-Morgenstern Andreas: Analysis and numerical investigation of two dynamic models for liquid chromatography. Chemical Engineering Science 2013, 90, 17. <https://doi.org/10.1016/j.ces.2012.12.014>
  • Gao Hong, Gritti Fabrice, Guiochon Georges: Investigations on the calculation of the third moments of elution peaks. II—Linear flow speed dependence of external mass transfer coefficient. Journal of Chromatography A 2013, 1294, 41. <https://doi.org/10.1016/j.chroma.2013.04.011>
  • Gritti Fabrice, Guiochon Georges: Mass transfer mechanism in hydrophilic interaction chromatography. Journal of Chromatography A 2013, 1302, 55. <https://doi.org/10.1016/j.chroma.2013.06.001>
  • Gritti Fabrice, Guiochon Georges: The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography. Journal of Chromatography A 2013, 1302, 1. <https://doi.org/10.1016/j.chroma.2013.06.032>
  • Qamar Shamsul, Abbasi Javeria N., Javeed Shumaila, Shah Munawar, Khan Farman U., Seidel-Morgenstern Andreas: Analytical solutions and moment analysis of chromatographic models for rectangular pulse injections. Journal of Chromatography A 2013, 1315, 92. <https://doi.org/10.1016/j.chroma.2013.09.031>
  • Liu Zheng, Roininen Jonas, Pulkkinen Iiro, Saari Pia, Sainio Tuomo, Alopaeus Ville: A new moment analysis method to estimate the characteristic parameters in chromatographic general rate model. Computers & Chemical Engineering 2013, 55, 50. <https://doi.org/10.1016/j.compchemeng.2013.04.015>
  • Gritti Fabrice, Guiochon Georges: A revisit of the concept of external film mass transfer resistance in the packed beds used in high-performance liquid chromatography. Chemical Engineering Science 2012, 72, 108. <https://doi.org/10.1016/j.ces.2012.01.028>
  • Gritti Fabrice, Guiochon Georges: Mass transfer kinetics, band broadening and column efficiency. Journal of Chromatography A 2012, 1221, 2. <https://doi.org/10.1016/j.chroma.2011.04.058>
  • Gao Hong, Stevenson Paul G., Gritti Fabrice, Guiochon Georges: Investigations on the calculation of the third moments of elution peaks. I: Composite signals generated by adding up a mathematical function and experimental noise. Journal of Chromatography A 2012, 1222, 81. <https://doi.org/10.1016/j.chroma.2011.12.015>
  • PETROV L., DAOUS M., ALHAMED Y., AL-ZAHRANI A., MAXIMOV Kh.: Use of Intraparticle Mass Transfer Parameters as a Design Tool for Catalyst Pellets. Chinese Journal of Catalysis 2012, 33, 1166. <https://doi.org/10.1016/S1872-2067(11)60406-3>
  • Gritti Fabrice, Guiochon Georges: New insights on mass transfer kinetics in chromatography. AIChE Journal 2011, 57, 333. <https://doi.org/10.1002/aic.12271>
  • Dimartino Simone, Boi Cristiana, Sarti Giulio C.: A validated model for the simulation of protein purification through affinity membrane chromatography. Journal of Chromatography A 2011, 1218, 1677. <https://doi.org/10.1016/j.chroma.2010.11.056>
  • Guiochon Georges, Tarafder Abhijit: Fundamental challenges and opportunities for preparative supercritical fluid chromatography. Journal of Chromatography A 2011, 1218, 1037. <https://doi.org/10.1016/j.chroma.2010.12.047>
  • Kaczmarski Krzysztof: On the optimization of the solid core radius of superficially porous particles for finite adsorption rate. Journal of Chromatography A 2011, 1218, 951. <https://doi.org/10.1016/j.chroma.2010.12.093>
  • Wernert Véronique, Bouchet Renaud, Denoyel Renaud: Influence of the structure of mesoporous adsorbents on transport properties. Microporous and Mesoporous Materials 2011, 140, 97. <https://doi.org/10.1016/j.micromeso.2010.09.016>
  • PETROV L.A., ALHAMED Y., AL-ZAHRANI A., DAOUS M.: Role of Chemical Kinetics in the Heterogeneous Catalysis Studies. Chinese Journal of Catalysis 2011, 32, 1085. <https://doi.org/10.1016/S1872-2067(10)60225-2>
  • Miyabe Kanji: Moment Equations for Chromatography Using Superficially Porous Spherical Particles. ANAL. SCI. 2011, 27, 1007. <https://doi.org/10.2116/analsci.27.1007>
  • Gritti Fabrice, Guiochon Georges: Impact of retention on trans‐column velocity biases in packed columns. AIChE Journal 2010, 56, 1495. <https://doi.org/10.1002/aic.12074>
  • Miyabe Kanji, Guiochon Georges: Surface diffusion in reversed-phase liquid chromatography. Journal of Chromatography A 2010, 1217, 1713. <https://doi.org/10.1016/j.chroma.2009.12.054>
  • Wernert Véronique, Bouchet Renaud, Denoyel Renaud: Influence of Molecule Size on Its Transport Properties through a Porous Medium. Anal. Chem. 2010, 82, 2668. <https://doi.org/10.1021/ac902858b>
  • Miyabe Kanji: Moment analysis of chromatographic behavior in reversed‐phase liquid chromatography. J of Separation Science 2009, 32, 757. <https://doi.org/10.1002/jssc.200800607>
  • Miyabe Kanji: Evaluation of chromatographic performance of various packing materials having different structural characteristics as stationary phase for fast high performance liquid chromatography by new moment equations. Journal of Chromatography A 2008, 1183, 49. <https://doi.org/10.1016/j.chroma.2007.12.064>
  • Forrer Nicola, Butté Alessandro, Morbidelli Massimo: Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization. Journal of Chromatography A 2008, 1214, 59. <https://doi.org/10.1016/j.chroma.2008.10.048>
  • Ladero Miguel, Santos Aurora, Garcia-Ochoa Felix: Hindered diffusion of proteins and polymethacrylates in controlled-pore glass: An experimental approach. Chemical Engineering Science 2007, 62, 666. <https://doi.org/10.1016/j.ces.2006.09.040>
  • Galinada Wilmer A., Guiochon Georges: Influence of microwave irradiation on the intraparticle diffusion of an insulin variant in reversed-phase liquid chromatography under linear conditions. Journal of Chromatography A 2007, 1163, 157. <https://doi.org/10.1016/j.chroma.2007.06.047>
  • Kavoosi Mojgan, Lam Dexter, Bryan Jenny, Kilburn Douglas G., Haynes Charles A.: Mechanically stable porous cellulose media for affinity purification of family 9 cellulose-binding module-tagged fusion proteins. Journal of Chromatography A 2007, 1175, 187. <https://doi.org/10.1016/j.chroma.2007.07.082>
  • Cavazzini Alberto, Gritti Fabrice, Kaczmarski Krzysztof, Marchetti Nicola, Guiochon Georges: Mass-Transfer Kinetics in a Shell Packing Material for Chromatography. Anal. Chem. 2007, 79, 5972. <https://doi.org/10.1021/ac070571a>
  • Miyabe Kanji: New Moment Equations for Chromatography Using Various Stationary Phases of Different Structural Characteristics. Anal. Chem. 2007, 79, 7457. <https://doi.org/10.1021/ac070825s>
  • Guiochon Georges: The limits of the separation power of unidimensional column liquid chromatography. Journal of Chromatography A 2006, 1126, 6. <https://doi.org/10.1016/j.chroma.2006.07.032>
  • Gritti Fabrice, Guiochon Georges: General HETP Equation for the Study of Mass-Transfer Mechanisms in RPLC. Anal. Chem. 2006, 78, 5329. <https://doi.org/10.1021/ac060203r>
  • Armatas G.S., Petrakis D.E., Pomonis P.J.: Estimation of diffusion parameters in functionalized silicas with modulated porosity. Journal of Chromatography A 2005, 1074, 53. <https://doi.org/10.1016/j.chroma.2005.03.046>
  • Galinada Wilmer A., Guiochon Georges: Effect of microwave dielectric heating on intraparticle diffusion in reversed-phase liquid chromatography. Journal of Chromatography A 2005, 1089, 125. <https://doi.org/10.1016/j.chroma.2005.06.062>
  • Galinada Wilmer A., Guiochon Georges: Comparison of chromatographic band profiles obtained under microwave irradiated and non-irradiated reversed-phase liquid chromatography column. Journal of Chromatography A 2005, 1092, 222. <https://doi.org/10.1016/j.chroma.2005.07.028>
  • Galinada Wilmer A., Kaczmarski Krzysztof, Guiochon Georges: Influence of Microwave Irradiation on the Mass-Transfer Kinetics of Propylbenzene in Reversed-Phase Liquid Chromatography. Ind. Eng. Chem. Res. 2005, 44, 8368. <https://doi.org/10.1021/ie058017j>
  • Bae Youn‐Sang, Im Sung‐Ha, Lee Kang‐Man, Kee Lee Joong, Lee Chang‐Ha: Adsorption Characteristics of Toluene andp‐Xylene in a Reversed‐Phase C18Column for Simulated Moving Bed Chromatography. Separation Science and Technology 2005, 40, 2183. <https://doi.org/10.1080/01496390500201151>
  • Miyabe Kanji, Guiochon Georges: Characterization of monolithic columns for HPLC. J of Separation Science 2004, 27, 853. <https://doi.org/10.1002/jssc.200401772>
  • Miyabe Kanji, Guiochon Georges: Comparison of the Characteristics of Adsorption Equilibrium and Surface Diffusion in Liquid−Solid and Gas−Solid Adsorption on C18-Silica Gels. J. Phys. Chem. B 2004, 108, 2987. <https://doi.org/10.1021/jp0309421>
  • Miyabe Kanji, Guiochon Georges: Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography. J of Separation Science 2003, 26, 155. <https://doi.org/10.1002/jssc.200390024>
  • Miyabe Kanji, Guiochon Georges: New model of surface diffusion in reversed-phase liquid chromatography. Journal of Chromatography A 2002, 961, 23. <https://doi.org/10.1016/S0021-9673(02)00116-4>
  • Miyabe Kanji, Guiochon Georges: Thermodynamic Interpretation of Retention Equilibrium in Reversed-Phase Liquid Chromatography Based on Enthalpy−Entropy Compensation. Anal. Chem. 2002, 74, 5982. <https://doi.org/10.1021/ac0202233>
  • Miyabe Kanji, Guiochon Georges: The Moment Equations of Chromatography for Monolithic Stationary Phases. J. Phys. Chem. B 2002, 106, 8898. <https://doi.org/10.1021/jp020555b>
  • Miyabe Kanji, Okada Ayumi: Retention equilibrium and mass transfer characteristics in reversed-phase liquid chromatography using methanol–water mixtures. Analyst 2002, 127, 1420. <https://doi.org/10.1039/B203667N>
  • Ladero M., Santos A., Garc�a-Ochoa F.: Diffusion and chemical reaction rates with nonuniform enzyme distribution: An experimental approach. Biotechnol. Bioeng. 2001, 72, 458. <https://doi.org/10.1002/1097-0290(20000220)72:4<458::AID-BIT1007>3.0.CO;2-R>
  • Miyabe Kanji, Sotoura Sayuri, Guiochon Georges: Retention and mass transfer characteristics in reversed-phase liquid chromatography using a tetrahydrofuran–water solution as the mobile phase. Journal of Chromatography A 2001, 919, 231. <https://doi.org/10.1016/S0021-9673(01)00821-4>
  • Miyabe Kanji, Guiochon Georges: Correlation between Surface Diffusion and Molecular Diffusion in Reversed-Phase Liquid Chromatography. J. Phys. Chem. B 2001, 105, 9202. <https://doi.org/10.1021/jp010563c>
  • Huang Ping Y., Carbonell Ruben G.: Affinity chromatographic screening of soluble combinatorial peptide libraries. Biotechnol. Bioeng. 1999, 63, 633. <https://doi.org/10.1002/(SICI)1097-0290(19990620)63:6<633::AID-BIT1>3.0.CO;2-C>
  • Miyabe Kanji, Guiochon Georges: Thermodynamic Characteristics of Surface Diffusion in Reversed-Phase Liquid Chromatography. J. Phys. Chem. B 1999, 103, 11086. <https://doi.org/10.1021/jp991725w>
  • García‐Ochoa F., Santos A.: Coke effect in mass transport and morphology of Pt‐Al2O3 and Ni‐Mo‐Al2O3 catalysts. AIChE Journal 1996, 42, 524. <https://doi.org/10.1002/aic.690420221>
  • Santos A., Bahamonde A., Avila P., García-Ochoa F.: Measurement of the effective diffusivity for a vanadia-tungsta-titania/sepiolite catalyst for SCR of NOx. Applied Catalysis B: Environmental 1996, 8, 299. <https://doi.org/10.1016/0926-3373(95)00056-9>
  • Lee Chang-Ha, Byeon Sang Hoon, Holder Gerald D.: Adsorption characteristics of toluene and naphthalene on silica gel under the subcritical and supercritical conditions using chromatographic techniques. J. Chem. Eng. Japan / JCEJ 1996, 29, 683. <https://doi.org/10.1252/jcej.29.683>
  • Goto Motonobu, Imamura Takahiro, Hirose Tsutomo: Axial dispersion in liquid magnetically stabilized fluidized beds. Journal of Chromatography A 1995, 690, 1. <https://doi.org/10.1016/0021-9673(94)00993-J>
  • Santos Aurora, García-Ochoa Félix: Direct test of adsorption enthalpy in 1-butene isomerization over a silica—alumina catalyst. The Chemical Engineering Journal and the Biochemical Engineering Journal 1995, 60, 147. <https://doi.org/10.1016/0923-0467(95)02979-6>
  • García-Ochoa F., Santos A.: Effective diffusivity under inert and reaction conditions. Chemical Engineering Science 1994, 49, 3091. <https://doi.org/10.1016/0009-2509(94)E0124-9>
  • Rodrigo M. T., Mendioroz S.: Pulse-response chromatographic method as a technique for determining the selectivity of polyunsaturated acids in hydrogenation. Chromatographia 1992, 34, 479. <https://doi.org/10.1007/BF02290240>
  • Golshan-Shirazi Sadroddin, Guiochon Georges: Comparison of the various kinetic models of non-linear chromatography. Journal of Chromatography A 1992, 603, 1. <https://doi.org/10.1016/0021-9673(92)85340-Y>
  • Moon Jeong Ki, Lee Won Kook: Adsorption Characteristics of Cresols with Eluent Composition in Adsorption Chromatography. Separation Science and Technology 1991, 26, 675. <https://doi.org/10.1080/01496399108049908>
  • Gonzalez-Marcos J.A., Alvarez-Uriarte J.I., Gutierrez-Ortiz J.I., Aguayo A.T., Gonzalez-Velasco J.R.: Adsorption studies of different reagents on supported palladium catalysts. Applied Catalysis 1990, 60, 1. <https://doi.org/10.1016/S0166-9834(00)82168-5>
  • Papathanasiou Thanos D., Kalogerakis Nicolas, Behie Leo A.: Dynamic modelling of mass transfer phenomena with chemical reaction in immobilized-enzyme bioreactors. Chemical Engineering Science 1988, 43, 1489. <https://doi.org/10.1016/0009-2509(88)85140-6>
  • Haynes. Henry W.: The Experimental Evaluation of Catalyst Effective Diffusivity. Catalysis Reviews 1988, 30, 563. <https://doi.org/10.1080/01614948808071754>
  • Schneider Petr: Accuracy of chromatographic moments—effect of peak treatment and approximations. Chemical Engineering Science 1987, 42, 1251. <https://doi.org/10.1016/0009-2509(87)80081-7>
  • Villermaux Jacques: Chemical engineering approach to dynamic modelling of linear chromatography. Journal of Chromatography A 1987, 406, 11. <https://doi.org/10.1016/S0021-9673(00)94014-7>
  • Lenhoff A.M.: Significance and estimation of chromatographic parameters. Journal of Chromatography A 1987, 384, 285. <https://doi.org/10.1016/S0021-9673(01)94678-3>
  • Schneider P.: Determination of effective diffusion coefficients for porous packings with an impermeable centre from peak moments. Chemical Engineering Science 1986, 41, 1759. <https://doi.org/10.1016/0009-2509(86)87054-3>
  • Kim Dong Hyun, Ma Guo Yu, Chang Kun Soo: The unsteady-state solution for a finite dispersion-type catalytic packed-bed tubular reactor. Korean J. Chem. Eng. 1985, 2, 125. <https://doi.org/10.1007/BF02697498>
  • Valuš J., Schneider P.: Transport parameters of porous catalysts via chromatography with a single-pellet-string column. Chemical Engineering Science 1985, 40, 1457. <https://doi.org/10.1016/0009-2509(85)80086-5>
  • Time-domain expression for impulse response (chromatographic) curve for the Kubín-Kučera model of adsorption column. Chemical Engineering Science 1984, 39, 927. <https://doi.org/10.1016/0009-2509(84)85067-8>
  • Lidefelt J. ‐O.: Adsorption equilibrium constants of methyl oleate and methyl linoleate in vapor phase on supported copper and nickel catalysts. J Americ Oil Chem Soc 1983, 60, 593. <https://doi.org/10.1007/BF02679794>
  • Hradil J., Horák D., Pelzbauer Z., Votavová E., Švec F., Kálal J.: Investigation of the surface structure of polymers by chromatographic methods. Journal of Chromatography A 1983, 259, 269. <https://doi.org/10.1016/S0021-9673(01)88007-9>
  • Poppe H., Kraak J.C.: Mass loadability of chromatographic columns. Journal of Chromatography A 1983, 255, 395. <https://doi.org/10.1016/S0021-9673(01)88297-2>
  • Goto Motonobu, Hayashi Norio, Goto Shigeo: Separation of Electrolyte and Nonelectrolyte by an Ion Retardation Resin. Separation Science and Technology 1983, 18, 475. <https://doi.org/10.1080/01496398308060288>
  • Garza‐Tobias G., Jimenez‐Ocana J., Rosales M.A.: Heterogeneous catalysis rate parameters in a gradientless reactor by the method of moments. Can J Chem Eng 1982, 60, 123. <https://doi.org/10.1002/cjce.5450600121>
  • Pazderník O., Schneider P.: Chromatographic determination of transport parameters of porous solids. Applied Catalysis 1982, 4, 321. <https://doi.org/10.1016/0166-9834(82)80131-0>
  • Alkharasani M.A., McCoy B.J.: Gas—liquid partition chromatographic separations in columns packed with porous particles — a model for uniform thickness liquid film. The Chemical Engineering Journal 1982, 23, 81. <https://doi.org/10.1016/0300-9467(82)85009-0>
  • Fahim M.A., Wakao N.: Parameter estimation from tracer response measurements. The Chemical Engineering Journal 1982, 25, 1. <https://doi.org/10.1016/0300-9467(82)85016-8>
  • Baiker A., New M.: Determination of macropore diffusion in molecular sieve particles by pulse gas chromatography. Journal of Chromatography A 1982, 238, 13. <https://doi.org/10.1016/S0021-9673(00)82707-7>
  • Rasmuson Anders: Exact solution of a model for diffusion and transient adsorption in particles and longitudinal dispersion in packed beds. AIChE Journal 1981, 27, 1032. <https://doi.org/10.1002/aic.690270625>
  • Poppe H., Paanakker J., Bronckhorst M.: Peak width in solvent-programmed chromatography. Journal of Chromatography A 1981, 204, 77. <https://doi.org/10.1016/S0021-9673(00)81641-6>
  • Pazdernik O., Schneider P.: Peak moments for gas chroatographic columns with a pressure drop. Journal of Chromatography A 1981, 207, 181. <https://doi.org/10.1016/S0021-9673(00)89930-6>
  • Damiani D.E., Valles E.M., Gigola C.E.: Gas chromatographic determination of adsorption-desorption rates. Journal of Chromatography A 1980, 196, 355. <https://doi.org/10.1016/S0021-9673(00)84738-X>
  • Grüneberg Matthias, Klein Joachim: Determination and Use of Cumulants of the Peak Broadening Function in Steric Exclusion Chromatography. Journal of Liquid Chromatography 1980, 3, 1593. <https://doi.org/10.1080/01483918008062800>
  • Wolff H.-J., Radeke K.-H., Gelbin D.: Heat and mass transfer in packed beds—IV. Chemical Engineering Science 1979, 34, 101. <https://doi.org/10.1016/0009-2509(79)85181-7>
  • Kopecká H., Schneider P.: Internal diffusion in porous poly(methyl methacrylate) column packings. Journal of Chromatography A 1979, 174, 13. <https://doi.org/10.1016/S0021-9673(00)87033-8>
  • Carleton F.B., Kershenbaum L.S., Wakeham W.A.: Adsorption in non-isobaric fixed beds. Chemical Engineering Science 1978, 33, 1239. <https://doi.org/10.1016/0009-2509(78)85089-1>
  • Goedecke R., Schügerl K., Todt J.: Influence of the sorption process on the gas residence times distribution in bench scale fluidized beds. Powder Technology 1978, 21, 227. <https://doi.org/10.1016/0032-5910(78)80092-8>
  • Razavi M.-S., McCoy B.J., Carbonell R.G.: Moment theory of breakthrough curves for fixed-bed adsorbers and reactors. The Chemical Engineering Journal 1978, 16, 211. <https://doi.org/10.1016/0300-9467(78)85058-8>
  • Van Kreveld M.E., Van den Hoed N.: Mass transfer phenomena in gel permeation chromatography. Journal of Chromatography A 1978, 149, 71. <https://doi.org/10.1016/S0021-9673(00)80979-6>
  • Komers R., Kopecká H., Kraus M.: Tailoring porous polymer gas chromatographic packings. Journal of Chromatography A 1978, 148, 43. <https://doi.org/10.1016/S0021-9673(00)99320-8>
  • Wojciechowski B.W., Rudziński W.: Effects of surface heterogeneity in non-linear and non-equilibrium gas-adsorption chromatography. Journal of Chromatography A 1977, 137, 1. <https://doi.org/10.1016/S0021-9673(00)89235-3>
  • Furusawa Takehiko, Suzuki Motoyuki, Smith J. M.: Rate Parameters in Heterogeneous Catalysis by Pulse Techniques. Catalysis Reviews 1976, 13, 43. <https://doi.org/10.1080/00087647608069934>
  • Carbonell R.G., McCoy B.J.: Moment theory of chromatographic separations: Resolution and optimization. The Chemical Engineering Journal 1975, 9, 115. <https://doi.org/10.1016/0300-9467(75)80003-7>
  • Kubín M.: A model of the mechanism of the separation of macromolecules in gel permeation chromatography on a packing with non-homogeneous pores. Journal of Chromatography A 1975, 108, 1. <https://doi.org/10.1016/S0021-9673(00)97483-1>
  • Choudhary Vasant R.: Gas chromatographic measurement of transport properties. Journal of Chromatography A 1974, 98, 491. <https://doi.org/10.1016/S0021-9673(00)84069-8>
  • Mehta R.V., Merson R.L., McCoy B.J.: Hermite polynomial representation of chromatography elution curves. Journal of Chromatography A 1974, 88, 1. <https://doi.org/10.1016/S0021-9673(01)91766-2>
  • Zhitomirskii B.M., Agafonov A.V., Berman A.D., Yanobskii M.I.: Theoretical approach to gas—solid chromatography applied to the slow attainment of adsorption equilibrium and to the langmuir istotherm. Journal of Chromatography A 1974, 94, 1. <https://doi.org/10.1016/S0021-9673(01)92352-0>
  • Saha N.C., Mathur D.S.: Studies on catalysts and catalysis by the techniques of gas chromatography. Journal of Chromatography A 1973, 81, 207. <https://doi.org/10.1016/S0021-9673(01)95061-7>
  • Chesler Stephen N., Cram Stuart P.: Iterative curve fitting of chromatographic peaks. Anal. Chem. 1973, 45, 1354. <https://doi.org/10.1021/ac60330a031>
  • Dougharty Neil A.: Effect of adsorbent particle‐size distribution in gas‐solid chromatography. AIChE Journal 1972, 18, 657. <https://doi.org/10.1002/aic.690180334>
  • Hopfe Volkmar, Marx Günter: Anwendung der Graschromatographie zur Untersuchung der Sorption und Reaktion von Gasen an Festkörperoberflächen. Zeitschrift fuer Chemie 1972, 12, 370. <https://doi.org/10.1002/zfch.19720121003>
  • Suzuki Motoyuki, Smith J.M.: Kinetic studies by chromatography. Chemical Engineering Science 1971, 26, 221. <https://doi.org/10.1016/0009-2509(71)80006-4>
  • Schanel L., Schneider P.: Axial dispersion due to molecular diffusion in gas chromatography. The Chemical Engineering Journal 1971, 2, 274. <https://doi.org/10.1016/0300-9467(71)85006-2>
  • Schultz O.E, Below R: Methoden zur bestimmung der desorptionsgeschwindigkeitskonstante chromatographischer prozesse. Journal of Chromatography A 1969, 43, 175. <https://doi.org/10.1016/S0021-9673(00)99181-7>
  • Hermans J. J.: Role of diffusion in gel permeation chromatography. J. Polym. Sci. A‐2 Polym. Phys. 1968, 6, 1217. <https://doi.org/10.1002/pol.1968.160060702>
  • Kragten J.: Theory of transport in linear partition systems occurring in chromatographic and electrophoretic models. Journal of Chromatography A 1968, 37, 373. <https://doi.org/10.1016/S0021-9673(01)99133-2>
  • Juvet Richard S., Dal Nogare Stephen.: Gas chromatography. Anal. Chem. 1968, 40, 33. <https://doi.org/10.1021/ac60261a004>
  • Heftmann Erich.: Chromatography. Anal. Chem. 1966, 38, 31. <https://doi.org/10.1021/ac60237a002>