Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1965, 30, 2511-2526
https://doi.org/10.1135/cccc19652511

Nicht-Newtonsche Flüssigkeiten IV. Strömung nicht-Newtonscher Flüssigkeiten Ostwald-de-Waeleschen Typs in der Umgebung rotierender Drehkegel und Scheiben

P. Mitschka and J. Ulbrecht

Crossref Cited-by Linking

  • He Zhihong, Arain Muhammad Bilal, Usman, Khan W.A., Rashash R Alzahrani Ali, Muhammad Taseer, Hendy A.S., Ali Mohamed R.: Theoretical exploration of heat transport in a stagnant power-law fluid flow over a stretching spinning porous disk filled with homogeneous-heterogeneous chemical reactions. Case Studies in Thermal Engineering 2023, 50, 103406. <https://doi.org/10.1016/j.csite.2023.103406>
  • Mukherjee Dip, Sahoo Bikash: Effect of surface stretching on convective instabilities of Kármán flow of non-Newtonian Carreau fluid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2022, 236, 10792. <https://doi.org/10.1177/09544062221105756>
  • Usman, Lin Ping, Ghaffari Abuzar: Steady flow and heat transfer of the power-law fluid between two stretchable rotating disks with non-uniform heat source/sink. J Therm Anal Calorim 2021, 146, 1735. <https://doi.org/10.1007/s10973-020-10142-x>
  • Usman, Ghaffari Abuzar, Mustafa Irfan, Muhammad Taseer, Altaf Yasir: Analysis of entropy generation in a power-law nanofluid flow over a stretchable rotatory porous disk. Case Studies in Thermal Engineering 2021, 28, 101370. <https://doi.org/10.1016/j.csite.2021.101370>
  • Usman, Lin Ping, Ghaffari Abuzar, Mustafa Irfan: A theoretical analysis of steady three-dimensional flow and heat transfer of Power-Law nanofluid over a stretchable rotating disk filled with gyrotactic microorganisms. Phys. Scr. 2021, 96, 015008. <https://doi.org/10.1088/1402-4896/abc647>
  • Kudenatti Ramesh B., Misbah Noor-E-: Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach. Sci Rep 2020, 10. <https://doi.org/10.1038/s41598-020-66106-6>
  • Ijaz M, Ayub M, Malik M Y, Khan H, Alderremy A A, Aly Shaban: Entropy analysis in nonlinearly convective flow of the Sisko model in the presence of Joule heating and activation energy: the Buongiorno model. Phys. Scr. 2020, 95, 025402. <https://doi.org/10.1088/1402-4896/ab2dc7>
  • EL-Dabe Nabil T., Attia Hazim A., Essawy Mohamed A. I., Abd-elmaksoud Ibrahim H., Ramadan Ahmed A., Abdel-Hamid Alaa H.: Non-linear heat and mass transfer in a thermal radiated MHD flow of a power-law nanofluid over a rotating disk. SN Appl. Sci. 2019, 1. <https://doi.org/10.1007/s42452-019-0557-6>
  • Ijaz M., Ayub M., Khan H.: Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk. Heliyon 2019, 5, e01863. <https://doi.org/10.1016/j.heliyon.2019.e01863>
  • Alqarni A.A., Alveroğlu B., Griffiths P.T., Garrett S.J.: The instability of non-Newtonian boundary-layer flows over rough rotating disks. Journal of Non-Newtonian Fluid Mechanics 2019, 273, 104174. <https://doi.org/10.1016/j.jnnfm.2019.104174>
  • Hayat Tasawar, Khan Muhammad Ijaz, Qayyum Sumaira, Khan Muhammad Imran, Alsaedi A.: Entropy generation for flow of Sisko fluid due to rotating disk. Journal of Molecular Liquids 2018, 264, 375. <https://doi.org/10.1016/j.molliq.2018.05.022>
  • Abdulameer M.A., Griffiths P.T., Alveroğlu B., Garrett S.J.: On the stability of the BEK family of rotating boundary-layer flows for power-law fluids. Journal of Non-Newtonian Fluid Mechanics 2016, 236, 63. <https://doi.org/10.1016/j.jnnfm.2016.08.006>
  • Griffiths P.T.: Flow of a generalised Newtonian fluid due to a rotating disk. Journal of Non-Newtonian Fluid Mechanics 2015, 221, 9. <https://doi.org/10.1016/j.jnnfm.2015.03.008>
  • Griffiths P.T., Stephen S.O., Bassom A.P., Garrett S.J.: Stability of the boundary layer on a rotating disk for power-law fluids. Journal of Non-Newtonian Fluid Mechanics 2014, 207, 1. <https://doi.org/10.1016/j.jnnfm.2014.02.004>
  • Sabiri N.-E., Chhabra R.P., Comiti J., Montillet A.: Measurement of shear rate on the surface of a cylinder submerged in laminar flow of power-law fluids. Experimental Thermal and Fluid Science 2012, 39, 167. <https://doi.org/10.1016/j.expthermflusci.2012.01.021>
  • Attia Hazem Ali, Ewis Karem Mahmoud, Elmaksoud Ibrahim Hamdy Abd, Abdeen Mostafa A. M.: Steady hydromagnetic flow of a non-Newtonian power law fluid due to a rotating porous disk with heat transfer. Russ. J. Phys. Chem. 2012, 86, 2063. <https://doi.org/10.1134/S0036024412130110>
  • Ming Chun Ying, Zheng Lian Cun, Zhang Xin Xin: MHD Flow of Shear-Thinning Fluid over a Rotating Disk with Heat Transfer. AMM 2011, 130-134, 3599. <https://doi.org/10.4028/www.scientific.net/AMM.130-134.3599>
  • Osalusi Emmanuel, Side Jonathan, Harris Robert, Johnston Barry: On the effectiveness of viscous dissipation and Joule heating on steady MHD flow and heat transfer of a Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents. International Communications in Heat and Mass Transfer 2007, 34, 1030. <https://doi.org/10.1016/j.icheatmasstransfer.2007.05.008>
  • Elperin T., Fominykh A.: Coupled Mass and Heat Transfer between a Cone and a Power‐Law Fluid. Chem Eng & Technol 2004, 27, 757. <https://doi.org/10.1002/ceat.200401889>
  • Andersson H.I., de Korte E.: MHD flow of a power-law fluid over a rotating disk. European Journal of Mechanics - B/Fluids 2002, 21, 317. <https://doi.org/10.1016/S0997-7546(02)01184-6>
  • Andersson H I, de Korte E, Meland R: Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn. Res. 2001, 28, 75. <https://doi.org/10.1016/S0169-5983(00)00018-6>
  • Legrand J, Dumont E, Comiti J, Fayolle F: Diffusion coefficients of ferricyanide ions in polymeric solutions — comparison of different experimental methods. Electrochimica Acta 2000, 45, 1791. <https://doi.org/10.1016/S0013-4686(99)00391-6>
  • Slavtchev S., Miladinova S., Kalitzova-Kurteva P.: Unsteady film flow of power-law liquids on a rotating disk. Journal of Non-Newtonian Fluid Mechanics 1996, 66, 117. <https://doi.org/10.1016/S0377-0257(96)01481-4>
  • Hilal M., Brunjail D., Comiti J.: Electrodiffusion characterization of non-Newtonian flow through packed beds. J Appl Electrochem 1991, 21, 1087. <https://doi.org/10.1007/BF01041452>
  • Gorla Rama Subba Reddy: Heat Transfer to a Nonisothermal Rotating Disk in a Non-Newtonian Fluid. Polymer-Plastics Technology and Engineering 1991, 30, 75. <https://doi.org/10.1080/03602559108019207>
  • Gorla Rama Subba Reddy: Unsteady Mass Transfer to a Rotating Disk in a Non-Newtonian Fluid. Polymer-Plastics Technology and Engineering 1991, 30, 89. <https://doi.org/10.1080/03602559108019208>
  • Deslouis C., Tribollet B.: Steady and modulated flow of an Ostwald fluid around a rotating disk. Rheol Acta 1987, 26, 336. <https://doi.org/10.1007/BF01332251>
  • Wichterle K., Mitschka P.: A novel approach to high shear rate rheometry. Rheol Acta 1986, 25, 331. <https://doi.org/10.1007/BF01357961>
  • WICHTERLE KAMIL, KADLEC MIROSLAV, ŽÁK LEO, MITSCHKA PAVEL: SHEAR RATES ON TURBINE IMPELLER BLADES. Chemical Engineering Communications 1984, 26, 25. <https://doi.org/10.1080/00986448408940200>
  • Kawase Y., Ulbrecht J. J.: Heat and mass transfer in non‐newtonian fluid flow with power function velocity profiles. Can J Chem Eng 1983, 61, 791. <https://doi.org/10.1002/cjce.5450610604>
  • Mitschka P.: Frictional resistance of spheres rotating in pseudoplastic non-newtonian fluids. Journal of Non-Newtonian Fluid Mechanics 1983, 12, 361. <https://doi.org/10.1016/0377-0257(83)85008-3>
  • Tsay Sun-Yuan, Chou Cheng-Huang: Laminar convection to rotating disks in non-Newtonian power-law fluids. International Communications in Heat and Mass Transfer 1983, 10, 377. <https://doi.org/10.1016/0735-1933(83)90025-8>
  • Kawase Y., Ulbrecht J.J.: Mass and heat transfer in a turbulent non-newtonian boundary layer. Letters in Heat and Mass Transfer 1982, 9, 79. <https://doi.org/10.1016/0094-4548(82)90025-X>
  • Deslouis C., Tribollet B.: Electrohydrodynamical impedance on a rotating disk electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1982, 142, 95. <https://doi.org/10.1016/S0022-0728(82)80008-9>
  • Bachrun Rachmat, Daguenet Michel: Lamiar boundary layer flow near a rotating axisymmetric electrode of arbitrary shape in a power-law fluid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1981, 124, 53. <https://doi.org/10.1016/S0022-0728(81)80284-7>
  • Rachmat Bachrun, Aryadi Suwono, Michel Daguenet: Control of the growth of the diffusional boundary layer on a rotating axisymmetric electrode of arbitrary shape in an ostwaldian fluid. Electrochimica Acta 1980, 25, 1561. <https://doi.org/10.1016/0013-4686(80)80005-3>
  • Lal P., Mishra P., Upadhyay S.N.: Diffusion and mass transfer from a rotating disk in aqueous polymeric solutions. Letters in Heat and Mass Transfer 1980, 7, 65. <https://doi.org/10.1016/0094-4548(80)90034-X>
  • Wein O., Mitschka P.: Pseudo�hnlichkeitsl�sung des Rayleighschen Problems f�r reinviskose nicht-newtonsche Fl�ssigkeiten. Rheol Acta 1978, 17, 463. <https://doi.org/10.1007/BF01534274>
  • Deslouis C., Tribollet B.: Non stationary mass transfer in the flow due to a disk rotating in an Ostwald. fluid. Application to the measurement of the molecular diffusion coefficient in a polymer solution. Electrochimica Acta 1978, 23, 935. <https://doi.org/10.1016/0013-4686(78)87018-2>
  • Smith R.N., Greif R.: Laminar convection to rotating cones and disks in non-newtonian power-law fluids. International Journal of Heat and Mass Transfer 1975, 18, 1249. <https://doi.org/10.1016/0017-9310(75)90233-1>
  • Daguenet Michel, Bodiot Daniel, Grandjean André: Applications des méthodes électrochimiques à l'étude du transfert de matière dans un fluide d'ostwald. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1974, 56, 91. <https://doi.org/10.1016/S0022-0728(74)80318-9>
  • Paterson J.A., Greif R., Cornet I.: Experimental and theoretical results for mass transfer to a rotating cone in a non-newtonian saline solution. International Journal of Heat and Mass Transfer 1973, 16, 1017. <https://doi.org/10.1016/0017-9310(73)90040-9>
  • Shulman Z.P., Pokryvailo N.A., Kordonsky V.I., Nesterov A.K.: Mass transfer peculiarities of a disc rotating in non-Newtonian fluid. International Journal of Heat and Mass Transfer 1973, 16, 1339. <https://doi.org/10.1016/0017-9310(73)90142-7>
  • Greif R., Paterson J. A.: Mass transfer to a rotating disk in a non-Newtonian fluid. The Physics of Fluids 1973, 16, 1816. <https://doi.org/10.1063/1.1694218>
  • Shul'man Z. P., Pokryvailo N. A., Kordonskii V. I., Lyashkevich V. D., Nesterov A. K.: Transient convective mass transfer at a disc rotating in a non-newtonian fluid. Journal of Engineering Physics 1972, 22, 307. <https://doi.org/10.1007/BF00829461>
  • Lykov A. V., Shul'man Z. P., Pokryvailo N. A., Kordonskii V. I., Kaberdina E. B.: Rheodynamics and mass transfer of a disk rotating in a non-Newtonian fluid. Journal of Engineering Physics 1970, 18, 691. <https://doi.org/10.1007/BF00827841>
  • Hansford Geoffrey S., Litt Mitchell: Mass transport from a rotating disk into power-law liquids. Chemical Engineering Science 1968, 23, 849. <https://doi.org/10.1016/0009-2509(68)80020-X>
  • Werner U.: Modelluntersuchungen an Rührwerken mit nicht‐Newtonschen Flüssigkeiten. Chemie Ingenieur Technik 1967, 39, 237. <https://doi.org/10.1002/cite.330390506>
  • Ulbrecht J., Wichterle K.: Schnell laufende Rührwerke bei laminarer Strömung, Simulation des mechanischen Rührens durch die rotierende Scheibe. Chemie Ingenieur Technik 1967, 39, 656. <https://doi.org/10.1002/cite.330391104>
  • Wichterle Kamil, Ulbrecht Jaromír: Bestimmung der Parameter des Potenzansatzes nach Ostwald-de Waele aus rheometrischen Messungen an einem Viskosimeter mit schnellrotierender Scheibe. Rheol Acta 1967, 6, 299. <https://doi.org/10.1007/BF01984624>
  • Mitschka P., Ulbrecht J.: Non-Newtonian fluids v frictional resistance of discs and cones rotating in power-law non-Newtonian fluids. Appl. sci. Res. 1965, 15, 345. <https://doi.org/10.1007/BF00411568>