Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1965, 30, 1643-1653
https://doi.org/10.1135/cccc19651643

Organosilicon compounds. XXXIX. Effect of (pd)π dative bonds on solvolysis of organosilicon hydrides

J. Hetflejš, F. Mareš and V. Chvalovský

Crossref Cited-by Linking

  • Schott Günther: Über die Reaktionsfähigkeit von Organo-Silicium-Verbindungen. Z. Chem. 2010, 6, 361. <https://doi.org/10.1002/zfch.19660061002>
  • Kaufmann Klaus-Dieter, Gisbier Doris, Rühlmann Klaus: Substitucntencffekte bei der spontanen Alkoholyse von Aminosilanen. Z. Chem. 2010, 21, 141. <https://doi.org/10.1002/zfch.19810210409>
  • Ploom Anu, Tuulmets Ants: A novel insight into the inductive effect in silicon chemistry. Journal of Organometallic Chemistry 2009, 694, 313. <https://doi.org/10.1016/j.jorganchem.2008.12.001>
  • Golubev Oleg, Panov Dmitri, Ploom Anu, Tuulmets Ants, Nguyen Binh T.: Quantitative substituent effects in the Grignard reaction with silanes. Journal of Organometallic Chemistry 2007, 692, 3700. <https://doi.org/10.1016/j.jorganchem.2007.05.009>
  • Hetflejs J., Kuncova G., Sabata S., Blechta V., Brus J.: Alternative synthesis of poly(hydroxymethylsiloxane) for lipase immobilization and use of the adsorbates as esterification biocatalysts. J Sol-Gel Sci Technol 2006, 38, 121. <https://doi.org/10.1007/s10971-006-7115-6>
  • Chruściel Jerzy J: 29Si NMR studies on the mechanism of dehydrocoupling of hydrosilanes with hydroxylic reagents in DMF — The role of DMF. Can. J. Chem. 2005, 83, 508. <https://doi.org/10.1139/v05-072>
  • Chruściel Jerzy J.: The Solvent Effects on Kinetics and Mechanism of Zinc or Cadmium Halide Catalyzed Reactions of Hydrosilanes with Hydroxylic Reagents. Collect. Czech. Chem. Commun. 2004, 69, 2281. <https://doi.org/10.1135/cccc20042281>
  • Chrusciel Jerzy J: A novel route to chlorodimethylsilane. Can. J. Chem. 2000, 78, 1405. <https://doi.org/10.1139/v00-025>
  • Schmittel Michael, Kelley Manfred, Burghart Armin: Silyl enol ether cation radicals in solution: nucleophile assisted Si–O bond cleavage. J. Chem. Soc., Perkin Trans. 2 1995, 2327. <https://doi.org/10.1039/P29950002327>
  • Popowski E., Holst N., Kelling H.: IR- und NMR-spektroskopische Untersuchungen zu Substituenteneffekten in Siloxy- und Alkoxysilanen. Z. Anorg. Allg. Chem. 1986, 543, 219. <https://doi.org/10.1002/zaac.19865431227>
  • Lukevics E., Dzintara M.: The alcoholysis of hydrosilanes. Journal of Organometallic Chemistry 1985, 295, 265. <https://doi.org/10.1016/0022-328X(85)80314-4>
  • Chiu Fang-Ting, Chang Young Hwan, Ӧzkan Günay, Zon Gerald, Fichter Kenneth C., Phillips Lawrence R.: Synthesis, Hydrolytic Reactivity, and Anticancer Evaluation of N- and O-Triorganosilylated Compounds as New Types of Potential Prodrugs. Journal of Pharmaceutical Sciences 1982, 71, 542. <https://doi.org/10.1002/jps.2600710517>
  • Czaková Marie, Čapka Martin: Hydrogenation activity of homogeneous and heterogenized rhodium(i) complexes containing (ω-triethoxy-silylalkyl)-diphenylphosphines. Journal of Molecular Catalysis 1981, 11, 313. <https://doi.org/10.1016/0304-5102(81)87019-8>
  • Bøe Bjarne: The mechanism of the acid-catalyzed propanolysis of 2-sila-1,3-dioxolanes. Journal of Organometallic Chemistry 1972, 43, 275. <https://doi.org/10.1016/S0022-328X(00)81601-0>
  • Nagai Yoichior, Ohtsuki Masa-aki, Nakano Taichi, Watanabe Hamao: Correlaiton of Hammett σ constants withNMR parameters for substituted phenylsilanes, phenylmethylsilanes and phenyldimethylsilanes. Journal of Organometallic Chemistry 1972, 35, 81. <https://doi.org/10.1016/S0022-328X(00)86885-0>
  • Spialter Leonard, Swansiger William A., Pazdernik LeRoy, Freeburger Michael E.: Comparison of isotope effects in reactions of monohydrosilanes. Journal of Organometallic Chemistry 1971, 27, C25. <https://doi.org/10.1016/S0022-328X(00)80553-7>
  • Nishimura Jun, Furukawa Junji, Kawabata Nariyoshi: The reaction of organosilicon and organotin hydrides with zinc carbenoids generated fromd iethylzinc and geminal diiodoalkanes. Journal of Organometallic Chemistry 1971, 29, 237. <https://doi.org/10.1016/S0022-328X(00)86131-8>
  • Schott G., Kuhla S.: Silane. XI. Substituenten-Effekte von C- und Si-haltigen Gruppen. Z. Anorg. Allg. Chem. 1970, 374, 86. <https://doi.org/10.1002/zaac.19703740112>
  • Carey Francis A., Hsu Chia-Lin Wang: Carbonium ion-silane hydride transfer reactions IV. Structure and reactivity at silicon. Journal of Organometallic Chemistry 1969, 19, 29. <https://doi.org/10.1016/S0022-328X(00)87751-7>
  • Marchand Annette, Mendelsohn Jacqueline, Lebedeff Michel, Valade Jacques: Étude comparative de la basicité de composés oxygénés du silicium, du germanium et de l'étain par spectrographie infrarouge. Journal of Organometallic Chemistry 1969, 17, 379. <https://doi.org/10.1016/S0022-328X(00)88224-8>
  • Seyferth Dietmar, Hetflejš Jiří: Halomethyl-metal compounds XV. Concerning the mechanism of the reaction of diazomethane with aryltrichlorogermanes. Journal of Organometallic Chemistry 1968, 11, 253. <https://doi.org/10.1016/0022-328X(68)80047-6>
  • Schott Günther, Bondybey Vladimir: Die Solvolyse von Dimethyl-aryl-acetoxy-silanen mit n-Propanol. Chem. Ber. 1967, 100, 1773. <https://doi.org/10.1002/cber.19671000602>
  • Mareš F., Chvalovský V.: Organosilicon compounds XLV. Pyrolysis of trialkylsilanes. Journal of Organometallic Chemistry 1966, 6, 327. <https://doi.org/10.1016/S0022-328X(00)81512-0>