Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1964, 29, 2060-2076
https://doi.org/10.1135/cccc19642060

Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine

A. Pískala and F. Šorm

Crossref Cited-by Linking

  • Wojciechowski Marek, Czapinska Honorata, Krwawicz Joanna, Rafalski Dominik, Bochtler Matthias: Cytosine analogues as DNA methyltransferase substrates. Nucleic Acids Research 2024, 52, 9267. <https://doi.org/10.1093/nar/gkae568>
  • Yue Xinru, Zhang Xun, Zhang Derong, Zhang Zhigang, Tang Lingkai, Ou Zuoxin, Cao Yujie, Li Jing, Li Ying, Liang Li, Liu Wei, Hu Jianping: Research Progress on hCNT3 Structure/Function and Nucleoside Anticancer Drugs. CPPS 2024, 25, 120. <https://doi.org/10.2174/1389203724666230905110952>
  • Maria Catarina, Rauter Amélia P.: Nucleoside analogues: N-glycosylation methodologies, synthesis of antiviral and antitumor drugs and potential against drug-resistant bacteria and Alzheimer's disease. Carbohydrate Research 2023, 532, 108889. <https://doi.org/10.1016/j.carres.2023.108889>
  • Holdgate Geoffrey A., Bardelle Catherine, Lanne Alice, Read Jon, O'Donovan Daniel H., Smith James M., Selmi Nidhal, Sheppard Robert: Drug discovery for epigenetics targets. Drug Discovery Today 2022, 27, 1088. <https://doi.org/10.1016/j.drudis.2021.10.020>
  • Šimoničová Kristína, Janotka Ľuboš, Kavcová Helena, Sulová Zdena, Breier Albert, Messingerova Lucia: Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resistance Updates 2022, 61, 100805. <https://doi.org/10.1016/j.drup.2022.100805>
  • Singh Manoj, Kumar Vikas, Sehrawat Nirmala, Yadav Mukesh, Chaudhary Mayank, Upadhyay Sushil K., Kumar Sunil, Sharma Varruchi, Kumar Sandeep, Dilbaghi Neeraj, Sharma Anil K.: Current paradigms in epigenetic anticancer therapeutics and future challenges. Seminars in Cancer Biology 2022, 83, 422. <https://doi.org/10.1016/j.semcancer.2021.03.013>
  • Gorica Era, Mohammed Shafeeq A., Ambrosini Samuele, Calderone Vincenzo, Costantino Sarah, Paneni Francesco: Epi-Drugs in Heart Failure. Front. Cardiovasc. Med. 2022, 9. <https://doi.org/10.3389/fcvm.2022.923014>
  • Onaciu Anca, Toma Valentin, Moldovan Cristian, Țigu Adrian Bogdan, Cenariu Diana, Culic Carina, Borșa Rareș Mario, David Luca, Știufiuc Gabriela Fabiola, Tetean Romulus, Tomuleasa Ciprian, Știufiuc Rareș Ionuț: Nanoscale Investigation of DNA Demethylation in Leukemia Cells by Means of Ultrasensitive Vibrational Spectroscopy. Sensors 2022, 23, 346. <https://doi.org/10.3390/s23010346>
  • Straube Jasmin, Lane Steven W., Vu Therese: Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes. BioEssays 2021, 43. <https://doi.org/10.1002/bies.202100125>
  • Cao Chang, Gilbert Elizabeth R., Cline Mark A.: DNA methylation-modifiers reduced food intake in juvenile chickens (Gallus gallus) and Japanese quail (Coturnix japonica). Neuroscience Letters 2021, 764, 136230. <https://doi.org/10.1016/j.neulet.2021.136230>
  • Vaidergorn Miguel M., da Silva Emery Flavio, Ganesan A.: From Hit Seeking to Magic Bullets: The Successful Union of Epigenetic and Fragment Based Drug Discovery (EPIDD + FBDD). J. Med. Chem. 2021, 64, 13980. <https://doi.org/10.1021/acs.jmedchem.1c00787>
  • Janotka Ľuboš, Messingerová Lucia, Šimoničová Kristína, Kavcová Helena, Elefantová Katarína, Sulová Zdena, Breier Albert: Changes in Apoptotic Pathways in MOLM-13 Cell Lines after Induction of Resistance to Hypomethylating Agents. IJMS 2021, 22, 2076. <https://doi.org/10.3390/ijms22042076>
  • Sorrentino Vincent G., Thota Srijan, Gonzalez Edward A., Rameshwar Pranela, Chang Victor T., Etchegaray Jean-Pierre: Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals 2021, 14, 641. <https://doi.org/10.3390/ph14070641>
  • Cook Nicola, Parker Darren J., Tauber Eran, Pannebakker Bart A., Shuker David M.: Validating the Demethylating Effects of 5-aza-2′-deoxycytidine in Insects Requires a Whole-Genome Approach. The American Naturalist 2019, 194, 432. <https://doi.org/10.1086/704248>
  • Ganesan A., Arimondo Paola B., Rots Marianne G., Jeronimo Carmen, Berdasco María: The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenet 2019, 11. <https://doi.org/10.1186/s13148-019-0776-0>
  • Ichikawa Yoshiyasu: The Dawn, Evolution and Personal Reminiscences in Studies of Glycosyl Isocyanates and Isocyanides. HETEROCYCLES 2018, 96, 1691. <https://doi.org/10.3987/REV-18-892>
  • Bozhok T. S., Kalinichenko E. N., Kuz’mitskii B. B., Golubeva M. B.: Synthesis, Hydrolytic Stability, and Antileukemic Activity of Azacytidine Nucleoside Analogs. Pharm Chem J 2016, 49, 804. <https://doi.org/10.1007/s11094-016-1375-4>
  • Shelton Jadd, Lu Xiao, Hollenbaugh Joseph A., Cho Jong Hyun, Amblard Franck, Schinazi Raymond F.: Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016, 116, 14379. <https://doi.org/10.1021/acs.chemrev.6b00209>
  • Hennessy Conor, McKernan Declan P: Epigenetics and innate immunity: the ‘unTolld’ story. Immunol Cell Biol 2016, 94, 631. <https://doi.org/10.1038/icb.2016.24>
  • Jahanfar Farhad, Hasani Akbar, Shanebandi Dariush, Rahmati Mohammad, Hamishehkar Hamed: Enhanced in Vitro Anti-Tumor Activity of 5-Azacytidine by Entrapment into Solid Lipid Nanoparticles. Adv Pharm Bull 2016, 6, 367. <https://doi.org/10.15171/apb.2016.048>
  • Bhat Jaydeep, Kabelitz Dieter: γδ T cells and epigenetic drugs: A useful merger in cancer immunotherapy?. OncoImmunology 2015, 4, e1006088. <https://doi.org/10.1080/2162402X.2015.1006088>
  • Khatun Amina, Shabir Nadeem, Yoon Kyoung-Jin, Kim Won-Il: Effects of ribavirin on the replication and genetic stability of porcine reproductive and respiratory syndrome virus. BMC Vet Res 2015, 11. <https://doi.org/10.1186/s12917-015-0330-z>
  • Michigami Kyosuke, Uchida Satoshi, Adachi Miho, Hayashi Masahiko: Synthesis of novel nucleosides and stereoselectivity of N-glycosidation. Tetrahedron 2013, 69, 595. <https://doi.org/10.1016/j.tet.2012.11.017>
  • Vujjini Satish Kumar, Varanasi Ganesh, Arevelli Srinivas, Kandala Sreenatha Charyulu, Tirumalaraju Satyanarayana Raju, Bandichhor Rakeshwar, Kagga Mukkanti, Cherukupally Praveen: An Improved and Scalable Process for the Synthesis of 5-Azacytidine: An Antineoplastic Drug. Org. Process Res. Dev. 2013, 17, 303. <https://doi.org/10.1021/op300192e>
  • Krečmerová Marcela, Otmar Miroslav: 5-Azacytosine Compounds In Medicinal Chemistry: Current Stage And Future Perspectives. Future Med. Chem. 2012, 4, 991. <https://doi.org/10.4155/fmc.12.36>
  • Tochitani Tomoaki, Kanemitsu Hiroyuki, Yamauchi Hirofumi, Uchida Kazuyuki, Nakayama Hiroyuki: 5-azacytidine, a chemotherapeutic drug, induces TRAIL-mediated apoptosis in mouse thymocytes in vivo. Experimental and Toxicologic Pathology 2011, 63, 237. <https://doi.org/10.1016/j.etp.2009.12.005>
  • Lim Sue Ping, Neilsen Paul, Kumar Raman, Abell Andrew, Callen David F.: The Application of Delivery Systems for DNA Methyltransferase Inhibitors. BioDrugs 2011, 25, 227. <https://doi.org/10.2165/11592770-000000000-00000>
  • Matoušová Marika, Votruba Ivan, Otmar Miroslav, Tloušťová Eva, Günterová Jana, Mertlíková-Kaiserová Helena: 2´-deoxy-5,6-dihydro-5-azacytidine - a less toxic alternative of 2´-deoxy-5-azacytidine. Epigenetics 2011, 6, 769. <https://doi.org/10.4161/epi.6.6.16215>
  • Krečmerová Marcela, Masojídková Milena, Holý Antonín: Acyclic nucleoside phosphonates with 5-azacytosine base moiety substituted in C-6 position. Bioorganic & Medicinal Chemistry 2010, 18, 387. <https://doi.org/10.1016/j.bmc.2009.10.044>
  • Mieczkowski Adam, Roy Vincent, Agrofoglio Luigi A.: Preparation of Cyclonucleosides. Chem. Rev. 2010, 110, 1828. <https://doi.org/10.1021/cr900329y>
  • Quintás-Cardama Alfonso, Santos Fabio P. S., Garcia-Manero Guillermo: Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol 2010, 7, 433. <https://doi.org/10.1038/nrclinonc.2010.87>
  • Yu Jian-Ning, Xue Chun-Yang, Wang Xu-Guang, Lin Fei, Liu Chun-Yi, Lu Fu-Zeng, Liu Hong-Lin: 5-AZA-2′-deoxycytidine (5-AZA-CdR) leads to down-regulation of Dnmt1o and gene expression in preimplantation mouse embryos. Zygote 2009, 17, 137. <https://doi.org/10.1017/S0967199408005169>
  • Dračínský Martin, Krečmerová Marcela, Holý Antonín: Study of chemical stability of antivirally active 5-azacytosine acyclic nucleoside phosphonates using NMR spectroscopy. Bioorganic & Medicinal Chemistry 2008, 16, 6778. <https://doi.org/10.1016/j.bmc.2008.05.058>
  • Guo Gang, Li Gang, Liu Dan, Yang Qian-Jiao, Liu Yu, Jing Yong-Kui, Zhao Lin-Xiang: Synthesis and Antiproliferative Activities of 5-Azacytidine Analogues in Human Leukemia Cells. Molecules 2008, 13, 1487. <https://doi.org/10.3390/molecules13071487>
  • Liu Zhongfa, Marcucci Guido, Byrd John C., Grever Michael, Xiao Jim, Chan Kenneth K.: Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5‐aza‐2′‐deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method. Rapid Comm Mass Spectrometry 2006, 20, 1117. <https://doi.org/10.1002/rcm.2423>
  • Fenaux Pierre: Inhibitors of DNA methylation: beyond myelodysplastic syndromes. Nat Rev Clin Oncol 2005, 2, S36. <https://doi.org/10.1038/ncponc0351>
  • Zsoldos‐Mády Virág, Sohár Pál, Kovács József, Pintér István, Szakács Zoltán: New Carbohydrate Derivatives of Norfloxacin. Journal of Carbohydrate Chemistry 2005, 24, 19. <https://doi.org/10.1081/CAR-200049410>
  • Ichikawa Yoshiyasu, Matsukawa Yohei, Nishiyama Taihei, Isobe Minoru: Synthesis, Characterization, and Reaction of Crystalline Fischer’s Glucopyranosyl Isocyanate. Eur J Org Chem 2004, 2004, 586. <https://doi.org/10.1002/ejoc.200300617>
  • Pískala Alois, Hanna Naeem B., Masojídková Milena, Fiedler Pavel, Votruba Ivan: Synthesis of N4-Amino and N4-Hydroxy Derivatives of 5-Azacytidine. A Facile Rearrangement of the N4-Amino Derivative to 5-(3-β-D-Ribofuranosylureido)-1H-1,2,4-triazole. Collect. Czech. Chem. Commun. 2004, 69, 905. <https://doi.org/10.1135/cccc20040905>
  • Dowell Jonathan E., Minna John D.: Cancer Chemotherapy Targeted at Reactivating the Expression of Epigenetically Inactivated Genes. JCO 2004, 22, 1353. <https://doi.org/10.1200/JCO.2004.01.947>
  • Pískala Alois, Hanna Naeem B., Masojídková Milena, Otmar Miroslav, Fiedler Pavel, Ubik Karel: Synthesis of N4-Alkyl-5-azacytidines and Their Base-Pairing with Carbamoylguanidines - A Contribution to Explanation of the Mutagenicity of 2'-Deoxy-5-azacytidine. Collect. Czech. Chem. Commun. 2003, 68, 711. <https://doi.org/10.1135/cccc20030711>
  • Christman Judith K: 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002, 21, 5483. <https://doi.org/10.1038/sj.onc.1205699>
  • Goffin J., Eisenhauer E.: DNA methyltransferase inhibitors—state of the art. Annals of Oncology 2002, 13, 1699. <https://doi.org/10.1093/annonc/mdf314>
  • Katritzky Alan R., Rogovoy Boris V., Vvedensky Vladimir Y., Hebert Normand, Forood Behrouz: Synthesis of Substituted 4(6)-Amino-1,3,5-triazin-2-ones and -1,3,5-triazin-2-thiones. J. Org. Chem. 2001, 66, 6797. <https://doi.org/10.1021/jo010416a>
  • Gaubert Gilles, Mathé Christophe, Imbach Jean-Louis, Eriksson Staffan, Vincenzetti Silvia, Salvatori Daniela, Vita Alberto, Maury Georges: Unnatural enantiomers of 5-azacytidine analogues: Syntheses and enzymatic properties. European Journal of Medicinal Chemistry 2000, 35, 1011. <https://doi.org/10.1016/S0223-5234(00)01184-3>
  • Wang Zhiwei, Prudhomme Daniel R., Buck Jason R., Park Minnie, Rizzo Carmelo J.: Stereocontrolled Syntheses of Deoxyribonucleosides via Photoinduced Electron-Transfer Deoxygenation of Benzoyl-Protected Ribo- and Arabinonucleosides. J. Org. Chem. 2000, 65, 5969. <https://doi.org/10.1021/jo0003652>
  • Hossain Mokbul, Nakayama Hiroyuki, Shinozuka Junko, Katayama Kei-ichi, Suzuki Kazuhiko, Doi Kunio: 5-Azacytidine-induced Apoptosis in Lymphoid and Hematopoietic Organs of Adult Mice. Journal of Toxicologic Pathology 2000, 13, 231. <https://doi.org/10.1293/tox.13.231>
  • Jackson-Grusby Laurie, Laird Peter W., Magge Suresh N., Moeller Benjamin J., Jaenisch Rudolf: Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 4681. <https://doi.org/10.1073/pnas.94.9.4681>
  • Hanna + Naeem B., Zajíček ++ Jaroslav, Pískala Alois: 6-Methyl-5-Azacytidine-Synthesis, Conformational Properties and Biological Activity. A Comparison of Molecular Conformation with 5-Azacytidine. Nucleosides and Nucleotides 1997, 16, 129. <https://doi.org/10.1080/07328319708002528>
  • Ramsahoye B.H., Davies C.S., Mills K.I.: DNA methylation: biology and significance. Blood Reviews 1996, 10, 249. <https://doi.org/10.1016/S0268-960X(96)90009-0>
  • Pintér István, Kovács József, Tóth Gábor: Synthesis of sugar ureas via phosphinimines. Carbohydrate Research 1995, 273, 99. <https://doi.org/10.1016/0008-6215(95)00029-S>
  • Hammons G.J., Warren G.J., Blann E., Nichols J., Lyn-Cook B.D.: Increased DT-diaphorase activity in transformed and tumorigenic pancreatic acinar cells. Cancer Letters 1995, 96, 9. <https://doi.org/10.1016/0304-3835(95)03911-F>
  • Hossain Mokbul Md., Nakayama Hiroyuki, Goto Naoaki: Apoptosis in the Central Nervous System of Developing Mouse Fetuses from 5-Azacytidine-Administered Dams. Toxicol Pathol 1995, 23, 367. <https://doi.org/10.1177/019262339502300313>
  • Hayashibara Kathleen C., Verdine Gregory L.: Template-directed interference footprinting of cytosine contacts in a protein-DNA complex: potent interference by 5-aza-2'-deoxycytidine. Biochemistry 1992, 31, 11265. <https://doi.org/10.1021/bi00161a002>
  • Lim Benjamin B., Marquez Victor E., Dobyns Kathryn A., Cooney David A., Clercq Erik De: Synthesis and Biological Study of the Cyclopentenyl Carbocyclic Nucleoside Analogue of 5-Azacytidine. Nucleosides and Nucleotides 1992, 11, 1123. <https://doi.org/10.1080/07328319208018331>
  • Kalinich J.F., Catravas G.N., Snyder S.L.: Radioprotective Properties of DNA Methylation-disrupting Agents. International Journal of Radiation Biology 1991, 59, 1217. <https://doi.org/10.1080/09553009114551091>
  • Avramis Vassilios I., Powell William C., Mecum Robert A.: Cellular metabolism of 5,6-dihydro-5-azacytidine and its incorporation into DNA and RNA of human lymphoid cells CEM/O and CEM/dCk(-). Cancer Chemother. Pharmacol. 1989, 24, 155. <https://doi.org/10.1007/BF00300235>
  • Avramis Vassilios I., Powell William C., Mecum Robert A.: Cellular metabolism of 1-?-d-arabinofuranosyl-5-azacytosine and incorporation into DNA and RNA of human lymphoid CEM/0 and CEM/dCk(?) cells. Cancer Chemother. Pharmacol. 1989, 25, 19. <https://doi.org/10.1007/BF00694333>
  • Hiebl Johann, Zbiral Erich: Synthese von Glycofuranosylformamiden, ‐isocyaniden und ‐isocyanaten ausgehend von den entsprechenden Glycosylaziden. Liebigs Ann. Chem. 1988, 1988, 765. <https://doi.org/10.1002/jlac.198819880811>
  • Johnson-Thompson Marian, Albury Denise: Azapyrimidine analogues: Inhibition of viral DNA synthesis and protein synthesis in SV40 infected BSC-1 cells. In Vitro Cell Dev Biol 1988, 24, 1114. <https://doi.org/10.1007/BF02620813>
  • Hassel Tillmann, Müller Hanns Peter: Glycosyl-isocyaniddichloride – neue Synthesebausteine für die Zuckerchemie. Angew. Chem. 1987, 99, 368. <https://doi.org/10.1002/ange.19870990429>
  • Hassel Tillmann, Müller Hanns Peter: Glycosyl Isocyanide Dichlorides—Novel Synthetic Building Blocks in Sugar Chemistry. Angew. Chem. Int. Ed. Engl. 1987, 26, 359. <https://doi.org/10.1002/anie.198703591>
  • Rustum Abu M., Hoffman Norman E.: High-performance liquid chromatographic determination of. Journal of Chromatography B: Biomedical Sciences and Applications 1987, 421, 387. <https://doi.org/10.1016/0378-4347(87)80422-X>
  • Riley Timothy A., Hennen William J., Dalley N. Kent, Wilson Bruce E., Robins Roland K.: Synthesis of 2‐(β‐D‐ribofuranosyl)[1,3,5]triazines. Journal of Heterocyclic Chem 1986, 23, 1709. <https://doi.org/10.1002/jhet.5570230621>
  • Avalos Gonzalez Martin, Fuentes Mota Jose, Gomez Monterrey Isabel Ma., Jimenez Requejo Jose L., Palacios Albarran Juan C., Ortiz Mellet Maria C.: Synthesis of 1,3,4,6-tetra-O-acetyl-2-[3-alkyl-(aryl)-thioreido]-2-deoxy-α-d-glucopyranoses and their transformation into 2-alkyl(aryl)amino-(1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-thiazolines. Carbohydrate Research 1986, 154, 49. <https://doi.org/10.1016/S0008-6215(00)90021-1>
  • Hawtrey A.O, Ariatti M: A possible model for the methylation of deoxycytidine in DNA. Medical Hypotheses 1984, 15, 125. <https://doi.org/10.1016/0306-9877(84)90117-8>
  • Huguenin Philipp N., Jayaram Hiremagalur N., Kelley James A.: Reverse Phase HPLC Determination OF 5,6-Dihydro-5-azacytidine in Biological Fluids. Journal of Liquid Chromatography 1984, 7, 1433. <https://doi.org/10.1080/01483918408074056>
  • Cech Dieter, König Joachim, Meinelt Barbara: Synthese eines Imidazol‐2‐thion‐nucleosids. Zeitschrift fuer Chemie 1982, 22, 58. <https://doi.org/10.1002/zfch.19820220219>
  • Paluska E., Hrubá Alena, Madar J., Činátl J., Chudomel V., Nezvalová Jana, Čihák A.: Inhibitory effects of 5-azapyrimidine nucleosides on cellular immunity. Immunobiology 1982, 162, 288. <https://doi.org/10.1016/S0171-2985(11)80008-2>
  • Yakhontov L. N., Vakhatova G. M.: Search for medicinal preparations in the series of 1,3,5-triazines (review). Pharm Chem J 1981, 15, 546. <https://doi.org/10.1007/BF00758588>
  • Kelly Cecil J., Coles Eric, Gaudio Linda, Yesair David W.: Characterization of the urinary metabolites of 5-azacytidine in mice. Biochemical Pharmacology 1980, 29, 609. <https://doi.org/10.1016/0006-2952(80)90384-6>
  • Lu Lee-Jane Wang, Chiang Grace H., Randerath Kurt: Effects of 5-azacytidine on transfer RNA modification: Comparative study on normal and malignant tissues. Life Sciences 1980, 27, 577. <https://doi.org/10.1016/0024-3205(80)90307-0>
  • Rada Břetislav, Doskočil Jiři: Azapyrimidine nucleosides. Pharmacology & Therapeutics 1980, 9, 171. <https://doi.org/10.1016/S0163-7258(80)80018-0>
  • Chan Kenneth K., Giannini Donald D., Staroscik James A., Sadee Wolfgang: 5-Azacytidine Hydrolysis Kinetics Measured by High-Pressure Liquid Chromatography and 13C-NMR Spectroscopy. Journal of Pharmaceutical Sciences 1979, 68, 807. <https://doi.org/10.1002/jps.2600680705>
  • Bellet Robert E., Catalano R. B., Mastrangelo Michael J., Berd David: Phase II study of subcutaneously administered 5‐azacytidine (NSC‐102816) in patients with metastatic malignant melanoma. Med. Pediatr. Oncol. 1978, 4, 11. <https://doi.org/10.1002/mpo.2950040104>
  • Veselý Jiří, Čihák Alois: 5-Azacytidine: Mechanism of action and biological effects in mammalian cells. Pharmacology & Therapeutics. Part A: Chemotherapy, Toxicology and Metabolic Inhibitors 1978, 2, 813. <https://doi.org/10.1016/0362-5478(78)90016-5>
  • SHNIDER BRUCE I., BAIG MAHMOODULLAH, COLSKY JACOB: A Phase I Study of 5‐Azacytidine (NSC‐102816). The Journal of Clinical Pharma 1976, 16, 205. <https://doi.org/10.1002/j.1552-4604.1976.tb01519.x>
  • Revankar Ganapathi R., Robins Roland K.: Synthesis of certain 1,2,4‐Thiadiazole nucleosides. Journal of Heterocyclic Chem 1976, 13, 169. <https://doi.org/10.1002/jhet.5570130140>
  • Lee Thomas T., Karon Myron R.: Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochemical Pharmacology 1976, 25, 1737. <https://doi.org/10.1016/0006-2952(76)90407-X>
  • Carter Stephen K., Slavik Milan: Investigational drugs under study by the United States National Cancer Institute. Cancer Treatment Reviews 1976, 3, 43. <https://doi.org/10.1016/S0305-7372(76)80016-3>
  • Coburn Robert A., Bhooshan Bharat: Mesoionie 1,3‐disubstituted s‐triazine‐4,6‐diones and their thione derivatives. Journal of Heterocyclic Chem 1975, 12, 187. <https://doi.org/10.1002/jhet.5570120138>
  • Chu Chung K., Watanabe Kyoichi A., Fox Jack J.: Nucleosides XCII. A facile synthesis of 5‐(β‐d‐ribofuranosyl)‐ isocytosine (ψ‐isocytidine). Journal of Heterocyclic Chem 1975, 12, 817. <https://doi.org/10.1002/jhet.5570120448>
  • Notari Robert E., Deyoung Joyce L.: Kinetics and Mechanisms of Degradation of the Antileukemic Agent 5‐Azacytidine in Aqueous Solutions. Journal of Pharmaceutical Sciences 1975, 64, 1148. <https://doi.org/10.1002/jps.2600640704>
  • Wentworth David F., Wolfenden Richard: Interaction of 3,4,5,6-tetrahydrouridine with human liver cytidine deaminase. Biochemistry 1975, 14, 5099. <https://doi.org/10.1021/bi00694a012>
  • Bloch Alexander: THE STRUCTURE OF NUCLEOSIDES IN RELATION TO THEIR BIOLOGICAL AND BIOCHEMICAL ACTIVITY: A SUMMARY. Annals of the New York Academy of Sciences 1975, 255, 576. <https://doi.org/10.1111/j.1749-6632.1975.tb29262.x>
  • Shone Robert L.: A synthesis of 3-deazathymidine. Tetrahedron Letters 1973, 14, 3079. <https://doi.org/10.1016/S0040-4039(01)96324-5>
  • Carter Stephen K.: New drugs on the horizon in bronchogenic carcinoma. Cancer 1972, 30, 1402. <https://doi.org/10.1002/1097-0142(197211)30:5<1402::AID-CNCR2820300539>3.0.CO;2-N>
  • Burchenal Joseph H., Carter Stephen K.: New cancer chemotherapeutic agents. Cancer 1972, 30, 1639. <https://doi.org/10.1002/1097-0142(197212)30:6<1639::AID-CNCR2820300633>3.0.CO;2-4>
  • Fučík V., Zadražil S., Jurovčík M., Šormová Z.: Mechanism of resistance to 5-azacytidine inBacillus Subtilis. Folia Microbiol 1972, 17, 517. <https://doi.org/10.1007/BF02872738>
  • Doskočil J.: The components of the nucleoside-transporting system in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Biomembranes 1972, 282, 393. <https://doi.org/10.1016/0005-2736(72)90344-6>
  • Langman Jan, Shimada Morimi: Cerebral cortex of the mouse after prenatal chemical insult. Am. J. Anat. 1971, 132, 355. <https://doi.org/10.1002/aja.1001320306>
  • Currie Bruce L., Robins Roland K., Robins Morris J.: The synthesis of 3‐deazapyrimidine nucleosides related to uridine and cytidine and their derivatives. Journal of Heterocyclic Chem 1970, 7, 323. <https://doi.org/10.1002/jhet.5570070211>
  • Zee-Cheng Kwang-Yuen, Cheng C.C.: Common Receptor-Complement Feature Among Some Antileukemic Compounds. Journal of Pharmaceutical Sciences 1970, 59, 1630. <https://doi.org/10.1002/jps.2600591118>
  • Fuǔík Vladimír, Michaelis Arnd, Rieger Rigomar: On the induction of segment extension and chromatid structural changes in Vicia faba chromosomes after treatment with 5-azacytidine and 5-azadeoxycytidine. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1970, 9, 599. <https://doi.org/10.1016/0027-5107(70)90105-3>
  • Vorbrüggen H., Niedballa U.: Eine einfache synthese von 5-azapyrimidin-nucleosiden. Tetrahedron Letters 1970, 11, 3571. <https://doi.org/10.1016/S0040-4039(01)98530-2>
  • Doskočil J., ŠOrm F.: The Mode of Action of 5‐Aza‐2′‐Deoxycytidine in Escherichia coli. European Journal of Biochemistry 1970, 13, 180. <https://doi.org/10.1111/j.1432-1033.1970.tb00916.x>
  • Evans J. S., Haňka L. J.: The in vivo activity of combinations of 5-azacytidine and cytidine on leukemia L-1210. Experientia 1968, 24, 922. <https://doi.org/10.1007/BF02138656>
  • Seifertová M., Veselý J., Šorm F.: Effect of 5-azacytidine on developing mouse embryo. Experientia 1968, 24, 487. <https://doi.org/10.1007/BF02144408>
  • Pačes V., Doskočil J., Šorm F.: Incorporation of 5-Azacytidine into nucleic acids of Escherichia coli. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 1968, 161, 352. <https://doi.org/10.1016/0005-2787(68)90113-5>
  • Veselý J., Čihák A., Šorm F.: Biochemical mechanism of drug resistance—VII. Biochemical Pharmacology 1968, 17, 519. <https://doi.org/10.1016/0006-2952(68)90267-0>
  • Pačes V., Doskočil J., Šorm F.: The effect of 5‐azacytidine on the synthesis of ribosomes in escherichia coli. FEBS Letters 1968, 1, 55. <https://doi.org/10.1016/0014-5793(68)80017-1>
  • Veselý J., Čihák A., Šorm F.: Biochemical mechanisms of drug resistance IV. Development of resistance to 5‐azacytidine and simultaneous depression of pyrimidine metabolism in leukemic mice. Intl Journal of Cancer 1967, 2, 639. <https://doi.org/10.1002/ijc.2910020625>
  • Doskočil J., Pačes V., Šorm F.: Inhibition of protein synthesis by 5-azacytidine in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 1967, 145, 771. <https://doi.org/10.1016/0005-2787(67)90136-0>
  • Doskočil J., Šorm F.: The action of 5-azacytidine on bacteria infected with bacteriophage T4. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 1967, 145, 780. <https://doi.org/10.1016/0005-2787(67)90137-2>
  • Veselý J., Seifert J., Čihák A., Šorm F.: Biochemical changes associated with the development of resistance to 5‐azacytidine in AKR leukemic mice. Intl Journal of Cancer 1966, 1, 31. <https://doi.org/10.1002/ijc.2910010106>
  • Fox Jack J., Miller Naishun C., Cushley Robert J.: Nucleosides XXXVI. Transformation of arabinopyrimidine nucleosides. Tetrahedron Letters 1966, 7, 4927. <https://doi.org/10.1016/S0040-4039(00)70117-1>