Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1964, 29, 214-233
https://doi.org/10.1135/cccc19640214

Oligonucleotidic compounds. VIII. Synthesis of adenylyl-(5'→3')-uridine, adenylyl-(5'→3')-cytidine, guanylyl-(5'→3')-uridine, guanylyl(5'→3')-cytidine, cytidylyl-(5'→3')-cytidine, adenylyl-(5'→3')-uridylyl-(5'→3')-cytidine and related compounds

S. Chládek and J. Smrt

Crossref Cited-by Linking

  • Bligh Cavan M., Anzalone Luigi, Jung Young Chun, Zhang Yuegang, Nugent William A.: Preparation of Both C5′ Epimers of 5′-C-Methyladenosine: Reagent Control Trumps Substrate Control. J. Org. Chem. 2014, 79, 3238. <https://doi.org/10.1021/jo500089t>
  • Chiesa Katja, Shvoryna Alyena, Bernet Bruno, Vasella Andrea: Oligonucleotide Analogues with Integrated Bases and Backbones. Part 24. Helvetica Chimica Acta 2010, 93, 668. <https://doi.org/10.1002/hlca.201000011>
  • Colombo Francesca, Falvella F. Stefania, De Cecco Loris, Tortoreto Monica, Pratesi Graziella, Ciuffreda Pierangela, Ottria Roberta, Santaniello Enzo, Cicatiello Luigi, Weisz Alessandro, Dragani Tommaso A.: Pharmacogenomics and analogues of the antitumour agent N6‐isopentenyladenosine. Intl Journal of Cancer 2009, 124, 2179. <https://doi.org/10.1002/ijc.24168>
  • Ritter Anne, Egli Daniel, Bernet Bruno, Vasella Andrea: Oligonucleotide Analogues with Integrated Bases and Backbone. Part 17. Helvetica Chimica Acta 2008, 91, 673. <https://doi.org/10.1002/hlca.200890071>
  • Zhang Xiaomin, Bernet Bruno, Vasella Andrea: Oligonucleotide Analogues with Integrated Bases and Backbone. Part 13. Helvetica Chimica Acta 2006, 89, 2861. <https://doi.org/10.1002/hlca.200690259>
  • Guillerm Georges, Muzard Murielle, Glapski Cédric, Pilard Serge, De Clercq Erik: Inactivation of S-Adenosyl-l-homocysteine Hydrolase by 6‘-Cyano-5‘,6‘-didehydro- 6‘-deoxyhomoadenosine and 6‘-Chloro-6‘- cyano-5‘,6‘-didehydro-6‘-deoxyhomoadenosine. Antiviral and Cytotoxic Effects. J. Med. Chem. 2006, 49, 1223. <https://doi.org/10.1021/jm051023x>
  • Bernier Stéphane, Akochy Pierre-Marie, Lapointe Jacques, Chênevert Robert: Synthesis and aminoacyl-tRNA synthetase inhibitory activity of aspartyl adenylate analogs. Bioorganic & Medicinal Chemistry 2005, 13, 69. <https://doi.org/10.1016/j.bmc.2004.09.055>
  • Bernier Stéphane, Dubois Daniel Y., Habegger-Polomat Charlotte, Gagnon Louis-Patrick, Lapointe Jacques, Chênevert Robert: Glutamylsulfamoyladenosine and pyroglutamylsulfamoyladenosine are competitive inhibitors of E. coli glutamyl-tRNA synthetase. Journal of Enzyme Inhibition and Medicinal Chemistry 2005, 20, 61. <https://doi.org/10.1080/14756360400002007>
  • Matthews Andrew John, Bhardwaj Punit Kumar, Vasella Andrea: Oligonucleotide Analogues with a ‘Nucleobase‐Including Backbone’. Part 10. Helvetica Chimica Acta 2004, 87, 2273. <https://doi.org/10.1002/hlca.200490204>
  • Eppacher Simon, Bhardwaj Punit Kumar, Bernet Bruno, Bravo Gala José Luis, Knöpfel Thomas, Vasella Andrea: Oligonucleosides with a Nucleobase‐Including Backbone. Part 12. Helvetica Chimica Acta 2004, 87, 2969. <https://doi.org/10.1002/hlca.200490269>
  • Ciuffreda Pierangela, Loseto Angela, Santaniello Enzo: Stereoselective adenylate deaminase (5′-adenylic acid deaminase, AMPDA)-catalyzed deamination of 5′-alkyl substituted adenosines: a comparison with the action of adenosine deaminase (ADA). Tetrahedron: Asymmetry 2004, 15, 203. <https://doi.org/10.1016/j.tetasy.2003.11.007>
  • Ciuffreda Pierangela, Loseto Angela, Santaniello Enzo: Deamination of 5′-substituted-2′,3′-isopropylidene adenosine derivatives catalyzed by adenosine deaminase (ADA, EC 3.5.4.4) and complementary enzymatic biotransformations catalyzed by adenylate deaminase (AMPDA, EC 3.5.4.6): a viable route for the preparation of 5′-substituted inosine derivatives. Tetrahedron 2002, 58, 5767. <https://doi.org/10.1016/S0040-4020(02)00575-6>
  • Brown Pamela, Richardson Christine M., Mensah Lucy M., O'Hanlon Peter J., Osborne Neal F., Pope Andrew J., Walker Graham: Molecular recognition of tyrosinyl adenylate analogues by prokaryotic tyrosyl tRNA synthetases. Bioorganic & Medicinal Chemistry 1999, 7, 2473. <https://doi.org/10.1016/S0968-0896(99)00192-3>
  • Arni Raghuvir K., Watanabe Leandra, Ward Richard J., Kreitman Robert J., Kumar Kapil, Walz Frederick G.: Three-Dimensional Structure of Ribonuclease T1 Complexed with an Isosteric Phosphonate Substrate Analogue of GpU:  Alternate Substrate Binding Modes and Catalysis,. Biochemistry 1999, 38, 2452. <https://doi.org/10.1021/bi982612q>
  • Epp Jeffrey B., Widlanski Theodore S.: Facile Preparation of Nucleoside-5‘-carboxylic Acids. J. Org. Chem. 1999, 64, 293. <https://doi.org/10.1021/jo981316g>
  • Poppe László, Rétey János, Hull William E.: Synthesis and Characterization of (5′‐Deoxyadenosin‐5′‐yl)cobalamin ( = ‘Adenosylcobalamin’) Analogues Mimicking the Transition‐State Geometry of Coenzyme‐B12‐Dependent Rearrangements. Helvetica Chimica Acta 1993, 76, 2367. <https://doi.org/10.1002/hlca.19930760623>
  • Vinayak Ravi, Hansske Fritz, Robins Morris J.: Nucleic acid related compounds. 81. Syntheses of 9‐(3‐deoxy‐β‐D‐threo‐pentofuranosyl)adenine, the core nucleoside of the extraordinarily selective antibiotic agrocin 84, and simplified structural component analogues. Journal of Heterocyclic Chem 1993, 30, 1181. <https://doi.org/10.1002/jhet.5570300504>
  • Dorion Catherine, Chênevert Robert, Lacoste Lucille, Lapointe Jacques: Synthesis of an inhibitor of glutamyl-tRNA synthetase. Bioorganic & Medicinal Chemistry Letters 1993, 3, 2699. <https://doi.org/10.1016/S0960-894X(01)80745-9>
  • Sako Magoichi, Makino Toru, Kitade Yukio, Hirota Kosaku, Maki Yoshifumi: N 6-substituent effect on the photooxidation of 2′,3′-O- isopropylideneadenosines with a pyrimido[5,4-g]pteridinetetraone N-oxide. Chemical evidence for the generation and reactivity of adenosyl cation radicals. J. Chem. Soc., Perkin Trans. 1 1992, 1801. <https://doi.org/10.1039/P19920001801>
  • Bottka S., Radics L., Tomasz J.: Evidence for the Stereoelectronic Control of the Acid Hydrolysis of Adenosine Cyclic 3′,5′-Phosphoramidate Diastereoisomers. Nucleosides and Nucleotides 1989, 8, 1217. <https://doi.org/10.1080/07328318908054328>
  • Radics L., Bottka S., Tomasz J.: 9-(6-Deoxy- β -D-Allofuranosyl)Adenine Cyclic 3′,5′ -Phosphor-Amidate: A New Cyclic AMP Amide Derivative Containing an Equatorial Methyl Group at the 5′-Position. Nucleosides and Nucleotides 1989, 8, 1305. <https://doi.org/10.1080/07328318908054335>
  • Chern Ji‐Wang, Groziak Michael P., Townsend Leroy B.: An unexpected product from the cyclodesulfurization of 5‐[1‐(3‐methoxycarbonyl)thioureido]‐1‐(β‐D‐ribofuranosyl)imidazole‐4‐ carboxamide with dicyclohexylcarbodiimide. Journal of Heterocyclic Chem 1986, 23, 153. <https://doi.org/10.1002/jhet.5570230131>
  • Moorman Allan R., Martin Tyler, Borchardt Ronald T.: Addition of 1-nitroalkanes to methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside and N6-benzoyl-2′,3′-O-isopropylideneadenosine-5′-aldehyde. Carbohydrate Research 1983, 113, 233. <https://doi.org/10.1016/0008-6215(83)88239-1>
  • Saba Don, Dekker Charles A.: Synthesis of nucleoside 3'-(S-alkyl phosphorothioates) and their use as substrates for nucleases. Biochemistry 1981, 20, 5461. <https://doi.org/10.1021/bi00522a017>
  • Zylber J., Pontikis R., Merrien A., Merienne C., Baran-Marszak M., Gaudemer A.: Synthese de la cyclo-5'-8 desoxy-5' adenosine: stereochimie et mecanisme de la cyclisation d'un derive de l'iodo-5' adenosine par le zinc. Tetrahedron 1980, 36, 1579. <https://doi.org/10.1016/S0040-4020(01)83125-2>
  • Mengel Rudolf, Muhs Wolfgang: Nucleosidtransformationen, V. Umwandlung von Guanosin in 2′‐Desoxy‐, 3′‐Desoxy‐, 2′,3′‐Anhydro‐ sowie xylo ‐Guanosin. Chem. Ber. 1979, 112, 625. <https://doi.org/10.1002/cber.19791120224>
  • van Boom J. H., Burgers P. M. J., Haasnoot C. A. G., Reese C. B.: Recueil des Travaux Chimiques des Pays‐Bas Journal of the Royal Netherlands Chemical Society: General method for the synthesis of 3′,5′‐diesters and 2′‐acetals of the four common nucleosides. Recl. Trav. Chim. Pays‐Bas 1977, 96, 91. <https://doi.org/10.1002/recl.19770960402>
  • Reitz Gunther, Pfleiderer Wolfgang: Nucleotide, III. Synthese und Eigenschaften von O′‐benzyl‐substituierten Diuridylphosphaten. Chem. Ber. 1975, 108, 2878. <https://doi.org/10.1002/cber.19751080908>
  • Bennett G. N., Gilham P. T.: Single addition substrates for the synthesis of specific oligoribonucleotides with polynucleotide phosphorylase. Synthesis of 2'-O-(α-methoxyethyl)nucleoside 5'-diphosphates. Biochemistry 1975, 14, 3152. <https://doi.org/10.1021/bi00685a018>
  • Myles Arthur, Pfleiderer Wolfgang: Nucleoside, VI. Synthese von 2′‐O‐, 3′‐O‐ und 5′‐O‐Benzyl‐adenosin. Chem. Ber. 1972, 105, 3327. <https://doi.org/10.1002/cber.19721051021>
  • Smrt J.: Protection of the internucleotidic bond after its synthesis. An approach to the synthesis of oligonucleotidic chains. Tetrahedron Letters 1972, 13, 3437. <https://doi.org/10.1016/S0040-4039(01)94065-1>
  • Green D.P.L., Ravindranathan T., Reese C.B., Saffhill R.: The synthesis of oligoribonucleotides—VIII. Tetrahedron 1970, 26, 1031. <https://doi.org/10.1016/S0040-4020(01)98780-0>
  • Kochetkov N. K., Budovskii E. I., Shibaev V. N., Spiridonova S. M.: Analogs of carbohydrate-metabolism coenzymes. Russ Chem Bull 1969, 18, 2350. <https://doi.org/10.1007/BF00906508>
  • Cramer Friedrich, Schneider Gerhard: Synthese von Oligo‐ und Polynucleotiden, XVII. Synthesen Cytidin‐haltiger Ribodinucleosidphosphate und Ribodinucleotide mit 3′‐terminalem Phosphat. Justus Liebigs Ann. Chem. 1968, 717, 193. <https://doi.org/10.1002/jlac.19687170120>
  • Griffin B.E., Jarman M., Reese C.B.: The Synthesis of oligoribonucleotides—IV. Tetrahedron 1968, 24, 639. <https://doi.org/10.1016/0040-4020(68)88015-9>
  • Belikova A.M., Zarytova V.F., Grineva N.I.: Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloro-ethylamine and nitrogen mustard residues. Tetrahedron Letters 1967, 8, 3557. <https://doi.org/10.1016/S0040-4039(01)89794-X>
  • Cramer F.: Die Synthese von Oligo‐ und Polynucleotiden. Angewandte Chemie 1966, 78, 186. <https://doi.org/10.1002/ange.19660780304>
  • Cramer F.: The Synthesis of Oligo‐ and Polynucleotides. Angew. Chem. Int. Ed. Engl. 1966, 5, 173. <https://doi.org/10.1002/anie.196601731>
  • Nagyváry Joseph: Studies on the Specific Synthesis of the Natural Internucleotide Linkage by the Use of Cyclonucleosides. I. The Utilization of Unprotected Nucleotides*. Biochemistry 1966, 5, 1316. <https://doi.org/10.1021/bi00868a027>
  • Eckstein Fritz, Cramer Friedrich: Notiz über 2′.3′‐O‐Äthoxymethylen‐Derivate von Ribonucleosiden. Chem. Ber. 1965, 98, 995. <https://doi.org/10.1002/cber.19650980347>
  • Griffin Beverly E., Reese C.B.: Oligoribonucleotide synthesis 2′,5′-protected ribonucleoside derivatives. Tetrahedron Letters 1964, 5, 2925. <https://doi.org/10.1016/0040-4039(64)83064-1>
  • Scheit von K.H., Cramer F.: Oligonucleotide V synthese von guanylyl-(3′–5′)-uridylyl-(3′-5′)-cytidin. Tetrahedron Letters 1964, 5, 2765. <https://doi.org/10.1016/S0040-4039(00)71727-8>
  • Žemlička J., Smrt J.: The reaction of O2,5′-cyclouridine and O2,5′-cyclocytidine derivatives with nucleotides. A new approach to the synthesis of the 3′→5′ internucleotidic bond. Tetrahedron Letters 1964, 5, 2081. <https://doi.org/10.1016/S0040-4039(01)89458-2>
  • Société Belge De Biochimie. Archives Internationales de Physiologie et de Biochimie 1964, 72, 675. <https://doi.org/10.3109/13813456409064108>