Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1959, 24, 3240-3248
https://doi.org/10.1135/cccc19593240

Separation sequences in multicomponent rectification

V. Rod and J. Marek

Crossref Cited-by Linking

  • Giri Prashant A., Mahajan Yogesh S.: An Overview of Strategies for Selecting the Optimal Sequence of Multi-Component Distillation. Theor Found Chem Eng 2022, 56, 1247. <https://doi.org/10.1134/S0040579522060057>
  • Zhu Zhaoyou, Li Guoxuan, Dai Yao, Cui Peizhe, Xu Dongmei, Wang Yinglong: Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Front. Chem. Sci. Eng. 2020, 14, 824. <https://doi.org/10.1007/s11705-019-1867-3>
  • Absattarov A. I., Pisarenko Yu. A., Semenov I. P.: Developing Optimization Criteria for Processes of Separating Low-Boiling Gases. Theor Found Chem Eng 2020, 54, 1111. <https://doi.org/10.1134/S0040579520050024>
  • Nallasivam Ulaganathan, Shah Vishesh H., Shenvi Anirudh A., Huff Joshua, Tawarmalani Mohit, Agrawal Rakesh: Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm. AIChE Journal 2016, 62, 2071. <https://doi.org/10.1002/aic.15204>
  • Maqsood Khuram, Ali Abulhassan, Shariff Azmi B.M., Ganguly Saibal: Synthesis of Conventional and Hybrid Cryogenic Distillation Sequence for Purification of Natural Gas. J. of Applied Sciences 2014, 14, 2722. <https://doi.org/10.3923/jas.2014.2722.2729>
  • Nallasivam Ulaganathan, Shah Vishesh H., Shenvi Anirudh A., Tawarmalani Mohit, Agrawal Rakesh: Global optimization of multicomponent distillation configurations: 1. Need for a reliable global optimization algorithm. AIChE Journal 2013, 59, 971. <https://doi.org/10.1002/aic.13875>
  • Shenvi Anirudh A., Shah Vishesh H., Agrawal Rakesh: New multicomponent distillation configurations with simultaneous heat and mass integration. AIChE Journal 2013, 59, 272. <https://doi.org/10.1002/aic.13971>
  • Agrawal Rakesh, Fidkowski Zbigniew T.: New thermally coupled schemes for ternary distillation. AIChE Journal 1999, 45, 485. <https://doi.org/10.1002/aic.690450306>
  • Agrawal Rakesh, Fidkowski Zbigniew T.: Thermodynamically Efficient Systems for Ternary Distillation. Ind. Eng. Chem. Res. 1999, 38, 2065. <https://doi.org/10.1021/ie980531k>
  • Agrawal Rakesh, Fidkowski Zbigniew T.: Improved direct and indirect systems of columns for ternary distillation. AIChE Journal 1998, 44, 823. <https://doi.org/10.1002/aic.690440407>
  • Wróbel J., Gawdzik A.: A quasi-optimal method for synthesis of a network of rectifying columns. Computers & Chemical Engineering 1994, 18, 45. <https://doi.org/10.1016/0098-1354(94)85022-4>
  • Porter K.E., Momoh S.O.: Finding the optimum sequence of distillation columns - an equation to replace the “rules of thumb” (heuristics). The Chemical Engineering Journal 1991, 46, 97. <https://doi.org/10.1016/0300-9467(91)87001-Q>
  • Jelínek Jaroslav, Ptáčník Radim: Synthesis of heat integrated rectification systems. Computers & Chemical Engineering 1988, 12, 427. <https://doi.org/10.1016/0098-1354(88)85059-2>
  • Gadkari P.B., Govind R.: Analytical screening criterion for sequencing of distillation columns. Computers & Chemical Engineering 1988, 12, 1199. <https://doi.org/10.1016/0098-1354(88)85071-3>
  • Henry B.D.: The use of mathematical models in the prediction of optimum distillation sequences. The Chemical Engineering Journal 1988, 37, 115. <https://doi.org/10.1016/0300-9467(88)80036-4>
  • Fidkowski Zbigniew, Królikowski LechosłW: Minimum energy requirements of thermally coupled distillation systems. AIChE Journal 1987, 33, 643. <https://doi.org/10.1002/aic.690330412>
  • Vu Liem Dug, Gadkari Prashant B., Govind Rakesh: Analysis of Ternary Distillation Column Sequences. Separation Science and Technology 1987, 22, 1659. <https://doi.org/10.1080/01496398708058428>
  • Gradl Werner, Blaß Eckhart: Zur Vorauswahl von Rektifiziersequenzen während der verfahrenstechnischen Entwicklung. Chemie Ingenieur Technik 1986, 58, 816. <https://doi.org/10.1002/cite.330581014>
  • Malone M. F., Glinos K., Marquez F. E., Douglas J. M.: Simple, analytical criteria for the sequencing of distillation columns. AIChE Journal 1985, 31, 683. <https://doi.org/10.1002/aic.690310419>
  • Gomez-Munoz Alejandro, Seader J.D.: Synthesis of distillation trains by thermodynamic analysis. Computers & Chemical Engineering 1985, 9, 311. <https://doi.org/10.1016/0098-1354(85)85011-0>
  • Schlüter Lothar, Schmidt Rudolf: Trend in der Rektifiziertechnik: Energie‐Einsparung. Chemie Ingenieur Technik 1982, 54, 143. <https://doi.org/10.1002/cite.330540209>
  • Nishida Naonori, Stephanopoulos George, Westerberg A. W.: A review of process synthesis. AIChE Journal 1981, 27, 321. <https://doi.org/10.1002/aic.690270302>
  • Nath R., Motard R. L.: Evolutionary synthesis of separation processes. AIChE Journal 1981, 27, 578. <https://doi.org/10.1002/aic.690270407>
  • Tedder D. William, Rudd Dale F.: Parametric studies in industrial distillation: Part I. Design comparisons. AIChE Journal 1978, 24, 303. <https://doi.org/10.1002/aic.690240220>
  • Tedder D. William, Rudd Dale F.: Parametric studies in industrial distillation: Part II. Heuristic optimization. AIChE Journal 1978, 24, 316. <https://doi.org/10.1002/aic.690240221>
  • Hlaváček V.: Synthesis in the design of chemical processes. Computers & Chemical Engineering 1978, 2, 67. <https://doi.org/10.1016/0098-1354(78)80010-6>
  • Seader J. D., Westerberg A. W.: A combined heuristic and evolutionary strategy for synthesis of simple separation sequences. AIChE Journal 1977, 23, 951. <https://doi.org/10.1002/aic.690230628>
  • Hendry J. E., Rudd D. F., Seader J. D.: Synthesis in the design of chemical processes. AIChE Journal 1973, 19, 1. <https://doi.org/10.1002/aic.690190103>
  • Thompson Roger W., King C. Judson: Systematic synthesis of separation schemes. AIChE Journal 1972, 18, 941. <https://doi.org/10.1002/aic.690180510>