Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1957, 22, 914-928
https://doi.org/10.1135/cccc19570914

Anwendung der Methode der dimensionslosen Parameter für die Lösung von Transportproblemen bei der Elektrolyse mit konstantem Strom an flacher und kugelförmiger Elektrode

J. Koutecký and J. Čížek

Crossref Cited-by Linking

  • Molina A., López-Tenés M., Laborda E.: Unified theoretical treatment of the Eirrev, CE, EC and CEC mechanisms under voltammetric conditions. Electrochemistry Communications 2018, 92, 48. <https://doi.org/10.1016/j.elecom.2018.03.011>
  • Molina A., Laborda E.: Detailed theoretical treatment of homogeneous chemical reactions coupled to interfacial charge transfers. Electrochimica Acta 2018, 286, 374. <https://doi.org/10.1016/j.electacta.2018.07.142>
  • Molina A., Laborda E., Gómez-Gil J.M., Martínez-Ortiz F., Compton R.G.: Analytical solutions for the study of homogeneous first-order chemical kinetics via UV–vis spectroelectrochemistry. Journal of Electroanalytical Chemistry 2018, 819, 202. <https://doi.org/10.1016/j.jelechem.2017.10.031>
  • Fekner Zygmunt: Digital Simulation of Cyclic Chronopotentiometry and Cyclic Reciprocal Derivative Chronopotentiometry for Linear Adsorption Systems. Collect. Czech. Chem. Commun. 2008, 73, 201. <https://doi.org/10.1135/cccc20080201>
  • Morales Isabel, Molina Ángela: Analytical expressions of the I–E–t curves of a CE process with a fast chemical reaction at spherical electrodes and microelectrodes. Electrochemistry Communications 2006, 8, 1453. <https://doi.org/10.1016/j.elecom.2006.07.008>
  • López-Tenés Manuela, Morales Isabel, Molina Ángela: Theoretical study of a catalytic mechanism using cyclic and derivative chronopotentiometric techniques with spherical electrodes. Electrochimica Acta 2006, 51, 2851. <https://doi.org/10.1016/j.electacta.2005.08.016>
  • González Joaquín, Morales Isabel, Serna Carmen, Molina Ángela: The pathways towards the steady state E/t and I/E responses when using an alternating current. Journal of Electroanalytical Chemistry 2005, 580, 179. <https://doi.org/10.1016/j.jelechem.2005.02.015>
  • Molina Ángela, Morales Isabel: Singularities of the catalytic mechanism in its route to the steady state. Journal of Electroanalytical Chemistry 2005, 583, 193. <https://doi.org/10.1016/j.jelechem.2005.06.003>
  • López‐Tenés Manuela, Molina Juana María, Molina Ángela: Study of the Behavior of an EC Mechanism Using Cyclic and Derivative Chronopotentiometric Techniques with Spherical Electrodes. Electroanalysis 2004, 16, 938. <https://doi.org/10.1002/elan.200302900>
  • Molina Ángela, González Joaquín, Morales Isabel: Reversal and Cyclic Chronopotentiometry with Exponential Current-Time Functions at Spherical Electrodes. Reversibility Effects and Experimental Verification. Collect. Czech. Chem. Commun. 2004, 69, 1997. <https://doi.org/10.1135/cccc20041997>
  • Molina Angela, González Joaquı́n, Saavedra Francisco, Abrantes Luisa M.: Cyclic reciprocal derivative chronopotentiometry. Applications to the detection and characterisation of adsorption processes. Electrochimica Acta 1999, 45, 761. <https://doi.org/10.1016/S0013-4686(99)00255-8>
  • Albaladejo Jose, Molina Angela, Ruiz-Hernandez Daniel: Exponential current chronopotentiometry at the dropping mercury electrode. Study of the transition times. Chemical Physics Letters 1988, 152, 519. <https://doi.org/10.1016/0009-2614(88)80452-4>
  • Molina Angela, Martinez-Ortiz Francisco, Albaladejo José: Chronopotentiometry with non-linear perturbation functions at the DME with a preceding blank period. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 251, 249. <https://doi.org/10.1016/0022-0728(88)85188-X>
  • Čukman Dunja, Čaja J., Pravdić V.: The electrochemical oxidation of uranium(IV) in sodium bicarbonate solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1968, 19, 267. <https://doi.org/10.1016/S0022-0728(68)80125-1>
  • Mamantov Gleb., Manning D. L.: Voltammetry and Related Studies of Uranium in Molten Lithium Fluoride-Beryllium Fluoride-Zirconium Fluoride. Anal. Chem. 1966, 38, 1494. <https://doi.org/10.1021/ac60243a010>
  • Anderson L. B., Macero D. J.: Generalized Chronopotentiometric Potential-Time Equations and Their Application to Quasi-Reversible Processes. Anal. Chem. 1965, 37, 322. <https://doi.org/10.1021/ac60222a003>
  • Mann C. K.: An Instrument for Cyclic Voltammetry. Anal. Chem. 1965, 37, 326. <https://doi.org/10.1021/ac60222a004>
  • D. Hurwitz Henri: Propriétés générales des méthodes chronopotentiométriques en régime de diffusion cylingrique et sphérique. Journal of Electroanalytical Chemistry (1959) 1964, 7, 368. <https://doi.org/10.1016/0022-0728(64)80025-5>
  • Savéant J.M., Vianello E.: Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process. Electrochimica Acta 1963, 8, 905. <https://doi.org/10.1016/0013-4686(62)87046-7>
  • Reinmuth W. R.: Theory of Diffusion Limited Charge-Transfer Processes in Electroanalytical Techniques. Anal. Chem. 1962, 34, 1446. <https://doi.org/10.1021/ac60191a030>
  • Gleit C. E., Holland W. D.: Use of Electrically Excited Oxygen for the Low Temperature Decomposition of Organic Substances. Anal. Chem. 1962, 34, 1454. <https://doi.org/10.1021/ac60191a031>
  • Hurwitz H.: ÉValuation De L'Influence De La Double‐Couche ÉLectrochimique Sur La CinéTique Etc. En. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1961, 65, 178. <https://doi.org/10.1002/bbpc.19610650212>
  • Hurwitz H., Gierst L.: Théorie et applications de la méthode chronopotentiométrique avec courant imposé croissant proportionnellement à la racine carrée du temps. Journal of Electroanalytical Chemistry (1959) 1961, 2, 128. <https://doi.org/10.1016/0022-0728(61)80004-1>
  • Hurwitz H.: Théorie et applications de la méthode chronopotentiométrique avec courant impose croissant proportionnellement à la racine carrée du temps. Journal of Electroanalytical Chemistry (1959) 1961, 2, 142. <https://doi.org/10.1016/0022-0728(61)80005-3>
  • Reinmuth W. H.: Chronopotentiometric Transition Times and Their Interpretation. Anal. Chem. 1961, 33, 322. <https://doi.org/10.1021/ac60171a003>
  • Shain Irving., Perone S. P.: Application of Stripping Analysis to the Determination of Iodide with Silver Microelectrodes. Anal. Chem. 1961, 33, 325. <https://doi.org/10.1021/ac60171a004>
  • Testa A. C., Reinmuth W. H.: Stepwise Reactions in Chronopotentiometry. Anal. Chem. 1961, 33, 1320. <https://doi.org/10.1021/ac60178a010>
  • Testa A. C., Reinmuth W. H.: Chronopotentiometry with Step-Functional Change in Current. Anal. Chem. 1961, 33, 1324. <https://doi.org/10.1021/ac60178a011>
  • Gierst L., Hurwitz H.: II. Double Layer Corrections in the Evaluation of Rate and Equilibrium Constants of Fast Homogeneous Reactions, Coupled with Electrode Reactions. ‐ Some Potentialities of the Galvanostatic Method. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1960, 64, 36. <https://doi.org/10.1002/bbpc.19600640113>
  • Reinmuth W. H.: Chronopotentiometric Potential-Time Curves and Their Interpretation. Anal. Chem. 1960, 32, 1514. <https://doi.org/10.1021/ac60167a037>
  • Hume David N.: Polarographic Theory, Instrumentation, and Methodology. Anal. Chem. 1958, 30, 675. <https://doi.org/10.1021/ac50163a017>