Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1953, 18, 337-349
https://doi.org/10.1135/cccc19530337

Catalysis of the polarographic reduction of hydrogen peroxide by compounds of iron in dilute sulphuric acid solutions

Z. Pospíšil

Crossref Cited-by Linking

  • Mirčeski Valentin, Skrzypek Sławomira, Ciesielski Witold, Sokołowski Adam: Theoretical and experimental study of the catalytic hydrogen evolution reaction in the presence of an adsorbed catalyst by means of square-wave voltammetry. Journal of Electroanalytical Chemistry 2005, 585, 97. <https://doi.org/10.1016/j.jelechem.2005.07.017>
  • Mirčeski Valentin, Gulaboski Rubin: Surface Catalytic Mechanism in Square-Wave Voltammetry. Electroanalysis 2001, 13, 1326. <https://doi.org/10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S>
  • Bobrowski Andrzej, Zarębski Jerzy: Catalytic Systems in Adsorptive Stripping Voltammetry. Electroanalysis 2000, 12, 1177. <https://doi.org/10.1002/1521-4109(200010)12:15<1177::AID-ELAN1177>3.0.CO;2-U>
  • Sychev Aleksei Ya, Isak V G: Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2and H2O2and of the oxidation of organic substrates. Russ. Chem. Rev. 1995, 64, 1105. <https://doi.org/10.1070/RC1995v064n12ABEH000195>
  • Basu Bharathibai J., Padma D. K., Rajagopalan S. R.: Differential pulse polarographic determination of trace levels of iron(III) by using the catalytic current. Fresenius J Anal Chem 1994, 349, 477. <https://doi.org/10.1007/BF00322939>
  • Heyrovský Michael, Vavrˇic˘ka Stanislav: Electroreduction of molecular oxygen in one 4-electron step on mercury. Journal of Electroanalytical Chemistry 1993, 353, 335. <https://doi.org/10.1016/0022-0728(93)80311-5>
  • Yokoi Kunihiko, van den Berg Constant M. G.: The determination of iron in seawater using catalytic cathodic stripping voltammetry. Electroanalysis 1992, 4, 65. <https://doi.org/10.1002/elan.1140040113>
  • Nolan James E., Plambeck James A.: The EC-catalytic mechanism at the rotating disk electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 286, 1. <https://doi.org/10.1016/0022-0728(90)85061-9>
  • Doubova Lioudmila, Mengoli Giuliano, Musiani Marco M., Valcher Sergio: Polyaniline as a cathode for O2 reduction—Kinetics of the reaction with H2O2 and use of the polymer in a model H2O2 fuel cell. Electrochimica Acta 1989, 34, 337. <https://doi.org/10.1016/0013-4686(89)87009-4>
  • Kato Nakahide, Aoki Koichi: Comparison of the polarographic catalytic currents of V(III)-EDTA/NO3− with those of V(IV)-EDTA/NO3−. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 261, 309. <https://doi.org/10.1016/0022-0728(89)85001-6>
  • Aoki Koichi, Ishida Minoru, Tokuda Koichi, Hasebe Kiyoshi: Electrode kinetics of the oxidation of hydrogen peroxide at pretreated glassy carbon and carbon fiber electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 251, 63. <https://doi.org/10.1016/0022-0728(88)80385-1>
  • Galvez J., Serna C., Saura R., Zapata J.: Current-potential curves for a catalytic mechanism with non-Nernstian behavior. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 199, 27. <https://doi.org/10.1016/0022-0728(86)87039-5>
  • Zeng Jilin., Osteryoung Robert A.: Square wave voltammetry for a pseudo-first-order catalytic process. Anal. Chem. 1986, 58, 2766. <https://doi.org/10.1021/ac00126a040>
  • Jan Chwu Ching., McCreery Richard L.: High-resolution spatially resolved visible absorption spectrometry of the electrochemical diffusion layer. Anal. Chem. 1986, 58, 2771. <https://doi.org/10.1021/ac00126a041>
  • Bieniasz L.: Influence of diffusion coefficient ratio on potential-step chronoamperometric and linear voltammetric current at stationary planar electrodes in the case of a pseudo-first-order EC catalytic reaction scheme. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 170, 77. <https://doi.org/10.1016/0022-0728(84)80037-6>
  • Lovrić M., Ruić I.: Extension of an analytical solution for polarographic current influenced by first-order coupled chemical reaction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 146, 253. <https://doi.org/10.1016/S0022-0728(83)80587-7>
  • Sobkowiak A., Fleszar B.: The equation of catalytic current of the Fe+3H2O2 system with regard to hydroxylation. Electrochimica Acta 1981, 26, 847. <https://doi.org/10.1016/0013-4686(81)85044-X>
  • Tomat R., Rigo A.: Electrochemical study on the reaction between Ti(III) and NH2OH in methanol. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1974, 57, 363. <https://doi.org/10.1016/S0022-0728(74)80061-6>
  • Tanaka Kazuyoshi, Nakano Kunio: Polarographic Study of Catalytic Reduction of Tris(2,2′-bipyridine)-copper(II) in the Presence of Nitrite Ion. Bulletin of the Chemical Society of Japan 1974, 47, 2222. <https://doi.org/10.1246/bcsj.47.2222>
  • Klatt Leon N., Blaedel Walter J.: Catalytic reactions at tubular electrodes. Anal. Chem. 1968, 40, 512. <https://doi.org/10.1021/ac60259a006>
  • Guidelli Rolando, Cozzi Danilo: Theory of first-order depolarizer regeneration in polarography and its application to a solid microelectrode with periodical renewal of the diffusion layer. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1967, 14, 245. <https://doi.org/10.1016/0022-0728(67)80001-9>
  • Haberland D., Landsberg R.: Zur Anwendung der rotierenden Scheibenelektrode beim Studium nachgelagerter chemischer Reaktionen. Ber Bunsenges Phys Chem 1966, 70, 724. <https://doi.org/10.1002/bbpc.19660700708>
  • Verdier E.T., Baptiste Mlle G.: Etude polarographique du cobalt bivalent en presence d'electrolytes de base non complexants. Journal of Electroanalytical Chemistry (1959) 1965, 10, 42. <https://doi.org/10.1016/0022-0728(65)85014-8>
  • Ashley J.W., Reilley Charles N.: Chemical kinetics in electrochemical processes. Journal of Electroanalytical Chemistry (1959) 1964, 7, 253. <https://doi.org/10.1016/0022-0728(64)80100-5>
  • Wiesner K.: Ferrous complexes in the catalase reaction. Experientia 1963, 19, 606. <https://doi.org/10.1007/BF02151018>
  • Koutecký J., Koryta J.: The general theory of polarographic kinetic currents. Electrochimica Acta 1961, 3, 318. <https://doi.org/10.1016/0013-4686(61)85008-1>
  • Nürnberg H.W., Von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 350. <https://doi.org/10.1016/0022-0728(61)85018-3>
  • Brdička R.: II1. Schnelle Lösungsreaktionen in den polarographischen Depolarisationsvorgängen und ihre Geschwindigkeitsbestimmung. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1960, 64, 16. <https://doi.org/10.1002/bbpc.19600640109>
  • Henke Karl‐Heinz, Hans Willi: Zur Theorie der polarographischen Kurve VI Reaktionskinetisch bedingte polarographische Stromstärke 3. Mitteilung: Dem Elektrodenprozeß nachgelagerte chemische Reaktionen unter Rückbildung des Depolarisators. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59, 676. <https://doi.org/10.1002/bbpc.19550590715>