Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1950, 15, 766-779
https://doi.org/10.1135/cccc19500766

Polarographic behaviour of reductone and coumarindiol

R. Brdička and P. Zuman

Crossref Cited-by Linking

  • Xing Lixiang, Xiahou Yujiao, Zhang Peina, Du Wei, Xia Haibing: Size Control Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles To Realize Surface-Enhanced Raman Scattering Uniformity and Reproducibility. ACS Appl. Mater. Interfaces 2019, 11, 17637. <https://doi.org/10.1021/acsami.9b02052>
  • van Beeumen J., De Ley J.: Polarography of 3-Keto-Sugars. Bull. Soc. Chim. Belges 2010, 80, 683. <https://doi.org/10.1002/bscb.19710800539>
  • Zuman Petr: Polarography in initial stages of elucidation of organic electrode processes. Collect. Czech. Chem. Commun. 2009, 74, 1757. <https://doi.org/10.1135/cccc2009122>
  • Goia DanV., Matijević Egon: Tailoring the particle size of monodispersed colloidal gold. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 146, 139. <https://doi.org/10.1016/S0927-7757(98)00790-0>
  • Zuman P.: Half a Century of Research Using Polarography. Microchemical Journal 1997, 57, 4. <https://doi.org/10.1006/mchj.1997.1468>
  • Calascibetta Franco: Chemistry in Czechoslovakia between 1919 and 1939: J. HeyrovskýA and the Prague Polarographic School. Centaurus 1997, 39, 368. <https://doi.org/10.1111/j.1600-0498.1997.tb00043.x>
  • Korell Ulrich., Lennox R. Bruce.: Determination of ascorbic acid using an organic conducting salt electrode. Anal. Chem. 1992, 64, 147. <https://doi.org/10.1021/ac00026a010>
  • Wang Joseph., Brennsteiner Albert., Angnes Lucio., Sylwester Alan., LaGasse Robert R., Bitsch Nils.: Mercury-coated carbon-foam composite electrodes for stripping analysis for trace metals. Anal. Chem. 1992, 64, 151. <https://doi.org/10.1021/ac00026a011>
  • Saraceno Reginaldo A., Pack Judith G., Ewing Andrew G.: Catalysis of slow charge transfer reactions at polypyrrole-coated glassy carbon electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 197, 265. <https://doi.org/10.1016/0022-0728(86)80154-1>
  • Deakin Mark R., Kovach Paul M., Stutts K. J., Wightman R. Mark.: Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes. Anal. Chem. 1986, 58, 1474. <https://doi.org/10.1021/ac00298a046>
  • Karabinas P., Sazou D., Jannakoudakis D.: —Comparative electrochemical study of L-ascorbic acid and dihydroxyfumaric acid on a mercury electrode in neutral media. Bioelectrochemistry and Bioenergetics 1985, 14, 469. <https://doi.org/10.1016/0302-4598(85)80019-2>
  • Roldán Emilio, Piazza Reyes, Dominiguez Manuel: Oxidation mechanism of triosereductone on a mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 172, 181. <https://doi.org/10.1016/0022-0728(84)80184-9>
  • Karabinas Pantelis, Jannakoudakis Dimitrios: Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 160, 159. <https://doi.org/10.1016/S0022-0728(84)80122-9>
  • Stutts Kenneth J., Wightman R. Mark.: Electrocatalysis of ascorbate oxidation with electrosynthesized, surface-bound mediators. Anal. Chem. 1983, 55, 1576. <https://doi.org/10.1021/ac00260a029>
  • Stutts Kenneth J., Kovach Paul M., Kuhr Werner G., Wightman R. Mark.: Enhanced electrochemical reversibility at heat-treated glassy carbon electrodes. Anal. Chem. 1983, 55, 1632. <https://doi.org/10.1021/ac00260a050>
  • Hobart David E., Norvell Vincent E., Varlashkin Peter G., Hellwege Herbert E., Peterson Joseph R.: Optically transparent porous metal foam electrode. Anal. Chem. 1983, 55, 1634. <https://doi.org/10.1021/ac00260a051>
  • Joslin T.A., Baigrie B.D.: Some studies on the electrochemical oxidation of N-[1-Methyl-2:3-Dihydroxy-cyclopenten(2)-ylidene(4)] piperidinium betaine(I). Electrochimica Acta 1981, 26, 883. <https://doi.org/10.1016/0013-4686(81)85050-5>
  • Hiromi Keitaro, Kuwamoto Chikako, Ohnishi Masatake: A rapid sensitive method for the determination of ascorbic acid in the excess of 2,6-dichlorophenolindophenol using a stopped-flow apparatus. Analytical Biochemistry 1980, 101, 421. <https://doi.org/10.1016/0003-2697(80)90208-0>
  • BURSTEIN Claude, TIANKOVA Lina, KEPES Adam: Respiratory Control in Escherichia coli K 12. Eur J Biochem 1979, 94, 387. <https://doi.org/10.1111/j.1432-1033.1979.tb12905.x>
  • Sontag Gerhard, Kainz Gerald: Bestimmung von Ascorbins�ure in Fruchts�ften und Limonaden mit Differential-Pulspolarographie. Mikrochim Acta 1978, 69, 175. <https://doi.org/10.1007/BF01196991>
  • Rueda M., Aldaz A., Sanchez-Burgos F.: Oxidation of L-ascorbic acid on a gold electrode. Electrochimica Acta 1978, 23, 419. <https://doi.org/10.1016/0013-4686(78)87040-6>
  • Fleury M.-B.: Etude de la reversibilite en solution aqueuse de couples constitues par des aci-reductones cycliques et leurs derives dehydro. Electrochimica Acta 1976, 21, 913. <https://doi.org/10.1016/0013-4686(76)85065-7>
  • Dufresne J.-C.: Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transport d'electrons dans les processus biologiques—III: etude de la reduction du derive dihydro de la ninhydrine. Electrochimica Acta 1975, 20, 973. <https://doi.org/10.1016/0013-4686(75)85059-6>
  • Fleury M.B., Dufresne J.-C.: Comportement electrochimique d'oxocarbones et d'aci-reductones en relation avec le transfert d'electrons dans les processus biologiques—IV: incidence des equilibres d'hydratation, de dimerisation et de dismutation sur la reversibilite du couple ninhydrine/derive dihydro. Electrochimica Acta 1975, 20, 981. <https://doi.org/10.1016/0013-4686(75)85060-2>
  • Aldaz A., Alquie A.M.: Production of a radical in electrochemical oxidation of L-ascorbic acid on different electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 47, 532. <https://doi.org/10.1016/S0022-0728(73)80205-0>
  • Wisser K., Völter Ilse, Heimann W.: Die Sulfitaddition an Dehydroascorbinsäure (Eine Erklärung des Redoxverhaltens der Ascorbinsäure). Nahrung 1969, 13, 599. <https://doi.org/10.1002/food.19690130703>
  • Teichmann B., Ziebarth D.: Zur kryoskopischen Molekulargewichtsbestimmung und Struktur von Dehydroascorbinsäure. J. Prakt. Chem. 1966, 33, 124. <https://doi.org/10.1002/prac.19660330302>
  • Herrmann J., Andrae W.: Oxydative Abbauprodukte der L-Ascorbinsäure 2. Mitt. Polarographischer Nachweis. Nahrung 1963, 7, 411. <https://doi.org/10.1002/food.19630070605>
  • Heimann Werner, Wisser Karl: Über das Redox-Verhalten der Ascorbinsäure. Justus Liebigs Ann. Chem. 1962, 653, 23. <https://doi.org/10.1002/jlac.19626530105>
  • Ono Sôzaburo, Takagi Masanosuke, Wasa Tamotsu: Polarographic Investigations of Vitamin C. I. On the Oxidation Waves of L-Ascorbic Acid and the Reduction Wave of Dehydro-L-ascorbic Acid. BCSJ 1958, 31, 356. <https://doi.org/10.1246/bcsj.31.356>
  • Ono Sozaburo, Takagi Masanosuke, Wasa Tamotsu: Polarographic Investigations of Vitamin C. II. On the Reduction Waves of Some Conjugated Tricarbonyl Compounds as Related Compounds of Dehydro-L-ascorbic Acid. BCSJ 1958, 31, 364. <https://doi.org/10.1246/bcsj.31.364>
  • Hesse Gerhard, Stahl Helmut: Dimethylredukton. Chem. Ber. 1956, 89, 2414. <https://doi.org/10.1002/cber.19560891031>
  • Baltes J.: Polarographische Untersuchungen auf dem Fettgebiet III: Polarographie von Antioxydantien. Fette, Seifen, Anstrichm. 1954, 56, 484. <https://doi.org/10.1002/lipi.19540560705>
  • Wawzonek Stanley: Organic Polarography. Anal. Chem. 1952, 24, 32. <https://doi.org/10.1021/ac60061a008>