Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1938, 10, 148-152
https://doi.org/10.1135/cccc19380148

Sur une nouvelle application de la règle de bredt

R. Lukeš

Crossref Cited-by Linking

  • Zhao Qun, Li Guangchen, Nareddy Pradeep, Jordan Frank, Lalancette Roger, Szostak Roman, Szostak Michal: Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N−C(X) Resonance. Angewandte Chemie 2022. <https://doi.org/10.1002/ange.202207346>
  • Zhao Qun, Li Guangchen, Nareddy Pradeep, Jordan Frank, Lalancette Roger, Szostak Roman, Szostak Michal: Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N−C(X) Resonance. Angew Chem Int Ed 2022. <https://doi.org/10.1002/anie.202207346>
  • Meng Guangrong, Zhang Jin, Szostak Michal: Acyclic Twisted Amides. Chem. Rev. 2021, 121, 12746. <https://doi.org/10.1021/acs.chemrev.1c00225>
  • Li Guangchen, Ma Siyue, Szostak Michal: Amide Bond Activation: The Power of Resonance. Trends in Chemistry 2020, 2, 914. <https://doi.org/10.1016/j.trechm.2020.08.001>
  • Stone Elizabeth A., Mercado Brandon Q., Miller Scott J.: Structure and Reactivity of Highly Twisted N-Acylimidazoles. Org. Lett. 2019, 21, 2346. <https://doi.org/10.1021/acs.orglett.9b00624>
  • Amatov Tynchtyk, Jangra Harish, Pohl Radek, Cisařová Ivana, Zipse Hendrik, Jahn Ullrich: Unique Stereoselective Homolytic C−O Bond Activation in Diketopiperazine‐Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chem. Eur. J. 2018, 24, 15336. <https://doi.org/10.1002/chem.201803284>
  • Liu Chengwei, Shi Shicheng, Liu Yongmei, Liu Ruzhang, Lalancette Roger, Szostak Roman, Szostak Michal: The Most Twisted Acyclic Amides: Structures and Reactivity. Org. Lett. 2018, 20, 7771. <https://doi.org/10.1021/acs.orglett.8b03175>
  • Kovács Ervin, Rózsa Balázs, Csomos Attila, Csizmadia Imre, Mucsi Zoltán: Amide Activation in Ground and Excited States. Molecules 2018, 23, 2859. <https://doi.org/10.3390/molecules23112859>
  • Liu Chengwei, Szostak Michal: Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation. Chem. Eur. J. 2017, 23, 7157. <https://doi.org/10.1002/chem.201605012>
  • Adachi Shinya, Kumagai Naoya, Shibasaki Masakatsu: Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination. Chem. Sci. 2017, 8, 85. <https://doi.org/10.1039/C6SC03669D>
  • Szostak Roman, Aubé Jeffrey, Szostak Michal: Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. J. Org. Chem. 2015, 80, 7905. <https://doi.org/10.1021/acs.joc.5b00881>
  • Szostak Michal, Aubé Jeffrey: Chemistry of Bridged Lactams and Related Heterocycles. Chem. Rev. 2013, 113, 5701. <https://doi.org/10.1021/cr4000144>
  • Hutchby Marc, Houlden Chris E., Haddow Mairi F., Tyler Simon N. G., Lloyd-Jones Guy C., Booker-Milburn Kevin I.: Switching Pathways: Room-Temperature Neutral Solvolysis and Substitution of Amides. Angew. Chem. 2012, 124, 563. <https://doi.org/10.1002/ange.201107117>
  • Hutchby Marc, Houlden Chris E., Haddow Mairi F., Tyler Simon N. G., Lloyd-Jones Guy C., Booker-Milburn Kevin I.: Switching Pathways: Room-Temperature Neutral Solvolysis and Substitution of Amides. Angew. Chem. Int. Ed. 2012, 51, 548. <https://doi.org/10.1002/anie.201107117>
  • Szostak Michal, Aubé Jeffrey: Medium-bridged lactams: a new class of non-planar amides. Org. Biomol. Chem. 2011, 9, 27. <https://doi.org/10.1039/C0OB00215A>
  • Clayden Jonathan, Moran Wesley J.: Das gebogene Amid 2-Chinuclidon: Synthese nach 60 Jahren. Angew. Chem. 2006, 118, 7276. <https://doi.org/10.1002/ange.200603016>
  • Clayden Jonathan, Moran Wesley J.: The Twisted Amide 2-Quinuclidone: 60 Years in the Making. Angew. Chem. Int. Ed. 2006, 45, 7118. <https://doi.org/10.1002/anie.200603016>
  • Tani Kousuke, Stoltz Brian M.: Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. Nature 2006, 441, 731. <https://doi.org/10.1038/nature04842>
  • Buynak John D., Rao A. Srinivasa, Adam Greg, Nidamarthy Sirishkumar D., Zhang Hongming: Synthesis of the First 2‘,6 Bridged Penams. J. Am. Chem. Soc. 1998, 120, 6846. <https://doi.org/10.1021/ja980195z>
  • Hall H. K., El-Shekeil Ali: Anti-bredt monomers. Polymer Bulletin 1980, 2, 829. <https://doi.org/10.1007/BF00255511>
  • Hall H. K., El-Shekeil Ali: Anti-bredt monomers. Polymer Bulletin 1980, 3, 233. <https://doi.org/10.1007/BF00291963>
  • Levkoeva E. I., Nikitskaya E. S., Yakhontov L. N.: Synthesis and transformations of 6,6,7,7-tetramethyl-2-quinuclidone. Chem Heterocycl Compd 1971, 7, 349. <https://doi.org/10.1007/BF00944421>
  • Moll F.: Kondensierte Azetidinone-(2) 3. Mitt.: Physikalischen Strukturbestimmung von 1-Azabicyclo[4,2,0]octanonen-(2). Arch. Pharm. Pharm. Med. Chem. 1968, 301, 263. <https://doi.org/10.1002/ardp.19683010405>
  • Meyer Walter L., Olsen Ronald G.: 2-(4-Piperidyl)ethanal and 3-(4-piperidyl)propanal. Can. J. Chem. 1967, 45, 1459. <https://doi.org/10.1139/v67-238>
  • Pracejus von H., Kehlen M., Kehlen H., Matschiner H.: Neues zur sterischen mesomeriehinderung bei lactamen vom typ des α-chinuclidons. Tetrahedron 1965, 21, 2257. <https://doi.org/10.1016/S0040-4020(01)93880-3>